搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微动条件下材料磨损率的一种计算分析方法

杨晓丽 王斌容 胡海云

引用本文:
Citation:

微动条件下材料磨损率的一种计算分析方法

杨晓丽, 王斌容, 胡海云

A method of calculating and analyzing wear rate of materials under fretting condition

Yang Xiao-Li, Wang Bin-Rong, Hu Hai-Yun
PDF
导出引用
  • 微动现象广泛存在于工程结构中,近年来越来越受到科研工作者的重视.为了对微动磨损进行深入研究,本文根据微动摩擦系统中摩擦副间的特点,针对微动磨损过程,提出不对称双势阱模型,建立了其中粒子的运动方程;利用非平衡统计思想建立了理论模型,得到了计算磨损率的新方法.以金属材料Mg和Fe组成的摩擦副系统为例进行了计算分析,得出磨损率随磨损时间和势阱宽度的变化,进一步分析了载荷正压力变化对磨损率的影响.计算分析结果表明,在其他条件均不变的情况下,材料磨损率随磨损时间的增大而减小,且随着摩擦副系统中势阱宽度和载荷正压力的减小,磨损率也呈减小趋势.最后,通过与试验结果比较,验证了该理论模型的适用性.
    Fretting phenomena exist widely in structural engineering. In recent years, it has attracted more attention from scientists and technicians. In order to study the fretting wear in depth, we establish a new method of calculating the wear rate of material in vibratory environment. Firstly, according to the characteristics of friction pair and fretting wear process in fretting friction system, the asymmetric double potential well model is proposed and the potential energy function of the model is given. The transfer of particles between the two kinds of materials during the fretting is regarded as the motion of the particles in the two potential wells which are asymmetrical, and the particle motion equation in the potential well is established. Furthermore, considering the characteristics of the randomness, time-varying and irreversibility of particle motion in fretting friction system, a theoretical model is established by using the non-equilibrium statistical theory, which is based on the particle equation motion, combined with the Langevin equation in random theory and the Foker-Planck equation in the non-equilibrium statistical theory. The probability density distribution function of particles moving from the interior of the material to the material surface at any time is obtained. A method of calculating the wear rate is proposed by integrating the probability density distribution function. Secondly, by calculating the wear rate of the friction pair which consists of metal materials Mg and Fe, we obtain the potential energy function of the asymmetric double potential well model as the different surface energies of both materials. Furthermore, the probability density distribution function of particles moving in this friction pair is calculated. Then, the change of wear rate with wear time and width of potential well is derived, and the effect of normal force on wear rate is further analyzed. The results of calculation and analysis show that the wear rate of material decreases with the decrease of the width of the potential well in the friction pair system, decreases with the increase of wear time and increases with the increase of the normal force of the load, and the surface of the relatively soft material in the friction pair system is more likely to wear off. Finally, the conclusions of the theoretical model accord with the experimental results, illustrating the applicability of the theoretical model.
      通信作者: 胡海云, huhy@bit.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11272053)资助的课题.
      Corresponding author: Hu Hai-Yun, huhy@bit.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11272053).
    [1]

    Zhou Z R, Vincent L 2002 Fretting Wear (1st Ed.) (Beijing: Science Press) pp30-32 (in Chinese) [周仲荣, Leo Vincent 2002微动磨损(第一版) (北京:科学出版社) 第3032页]

    [2]

    Hao H W, Yang M S, Sun S Q, Wang Y J, Zhang Z H 2016 Iron. Steel. 28 61 (in Chinese) [郝宏伟, 杨卯生, 孙世清, 王艳江, 张志慧 2016 钢铁研究学报 28 61]

    [3]

    Wang Z, Cai Z B, Sun Y, Wu S B, Peng J F, Zhu M H 2017 Die. Mould Ind. 37 225 (in Chinese) [王璋, 蔡振兵, 孙阳, 吴松波, 彭金方, 朱旻昊 2017 摩擦学学报 37 225]

    [4]

    Ding Y, Liang J, Deng K, Bo L, Dai Z D 2017 Chin. J. Nonferrous Met. 27 532 (in Chinese) [丁燕, 梁军, 邓凯, 柏林, 戴振东 2017 中国有色金属学报 27 532]

    [5]

    Zhang D K, Ge S R, Zhu Z C 2002 J. Chin. Univ. Min. Technol. 31 367 (in Chinese) [张德坤, 葛世荣, 朱真才 2002 中国矿业大学学报 31 367]

    [6]

    Zhu Z M, Jiang H 2017 Die. Mould Ind. 37 558 (in Chinese) [朱忠猛, 蒋晗 2017 摩擦学学报 37 558]

    [7]

    Xiao J J 2013 High Energy Material Molecular Dynamics (1st Ed.) (Beijing: Science Press) pp7-13 (in Chinese) [肖继军 2013高能材料分子动力学(第一版) (北京: 科学出版社) 第713页]

    [8]

    Wang Z G, Zhang P, Chen J X, Bai Q S, Liang Y C 2015 Acta Phys. Sin. 64 198104 (in Chinese) [王治国, 张鹏, 陈家轩, 白清顺, 梁迎春 2015 64 198104]

    [9]

    Johnson K L 1986 Die. Mould Ind. 108 464

    [10]

    Lu H 2008 M. S. Thesis (Beijing: Beijing Institute of Technology) (in Chinese) [卢宏 2008 硕士学位论文 (北京:北京理工大学)]

    [11]

    Li R S 1995 Balanced and Non-equilibrium Statistical Mechanics (1st Ed.) (Beijing: Tsinghua University Press) pp4-6 (in Chinese) [李如生 1995 平衡和非平衡统计力学(第一版) (北京: 清华大学出版社)第46页]

    [12]

    Xing X S 1986 Sci. China: Ser. A 29 501 (in Chines) [邢修三 1986 中国科学A辑 29 501]

    [13]

    Bao J D 2009 Classical and Stochastic Simulation (1st Ed.) (Beijing: Science Press) p107 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (第一版) (北京: 科学出版社)第107页]

    [14]

    Xing X S 1991 Chin. J. Mater. Res. 5 22 (in Chinese) [邢修三 1991 材料研究学报 5 22]

    [15]

    Hu G, Hao B L 1994 Stochastic Force and Nonlinear System (1st Ed.) (Shanghai: Shanghai Science and Technology Education Press) p127 (in Chinese) [胡岗, 赫柏林 1994 随机力与非线性系统 (第一版) (上海: 上海科技教育出版社) 第127页]

    [16]

    Xu Z M, Huang P 16 2006 Die. Mould Ind. 26 159 (in Chinese) [许中明, 黄平 2006 摩擦学学报 26 159]

    [17]

    RiedoE, GneccoE, Bennewitz R, Meyer E 2003 Phys. Rev. Lett. 91 084502

    [18]

    Jiang L R 2015 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese) [蒋利荣 2015 硕士学位论文 (成都: 西南交通大学)]

    [19]

    Li Z J, Zhang D T, Shao M 2009 Lubricat. Oil. 34 61 (in Chinese) [李助军, 张大童, 邵明 2009 润滑与密封 34 61]

    [20]

    Wang K S, Liu Q K, Zhang D Y 2009 Acta Phys. Sin. 58 89 (in Chinese) [王可胜, 刘全坤, 张德元 2009 58 89]

    [21]

    Ma L 2009 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese) [马磊 2009 硕士学位论文 (成都: 西南交通大学)]

  • [1]

    Zhou Z R, Vincent L 2002 Fretting Wear (1st Ed.) (Beijing: Science Press) pp30-32 (in Chinese) [周仲荣, Leo Vincent 2002微动磨损(第一版) (北京:科学出版社) 第3032页]

    [2]

    Hao H W, Yang M S, Sun S Q, Wang Y J, Zhang Z H 2016 Iron. Steel. 28 61 (in Chinese) [郝宏伟, 杨卯生, 孙世清, 王艳江, 张志慧 2016 钢铁研究学报 28 61]

    [3]

    Wang Z, Cai Z B, Sun Y, Wu S B, Peng J F, Zhu M H 2017 Die. Mould Ind. 37 225 (in Chinese) [王璋, 蔡振兵, 孙阳, 吴松波, 彭金方, 朱旻昊 2017 摩擦学学报 37 225]

    [4]

    Ding Y, Liang J, Deng K, Bo L, Dai Z D 2017 Chin. J. Nonferrous Met. 27 532 (in Chinese) [丁燕, 梁军, 邓凯, 柏林, 戴振东 2017 中国有色金属学报 27 532]

    [5]

    Zhang D K, Ge S R, Zhu Z C 2002 J. Chin. Univ. Min. Technol. 31 367 (in Chinese) [张德坤, 葛世荣, 朱真才 2002 中国矿业大学学报 31 367]

    [6]

    Zhu Z M, Jiang H 2017 Die. Mould Ind. 37 558 (in Chinese) [朱忠猛, 蒋晗 2017 摩擦学学报 37 558]

    [7]

    Xiao J J 2013 High Energy Material Molecular Dynamics (1st Ed.) (Beijing: Science Press) pp7-13 (in Chinese) [肖继军 2013高能材料分子动力学(第一版) (北京: 科学出版社) 第713页]

    [8]

    Wang Z G, Zhang P, Chen J X, Bai Q S, Liang Y C 2015 Acta Phys. Sin. 64 198104 (in Chinese) [王治国, 张鹏, 陈家轩, 白清顺, 梁迎春 2015 64 198104]

    [9]

    Johnson K L 1986 Die. Mould Ind. 108 464

    [10]

    Lu H 2008 M. S. Thesis (Beijing: Beijing Institute of Technology) (in Chinese) [卢宏 2008 硕士学位论文 (北京:北京理工大学)]

    [11]

    Li R S 1995 Balanced and Non-equilibrium Statistical Mechanics (1st Ed.) (Beijing: Tsinghua University Press) pp4-6 (in Chinese) [李如生 1995 平衡和非平衡统计力学(第一版) (北京: 清华大学出版社)第46页]

    [12]

    Xing X S 1986 Sci. China: Ser. A 29 501 (in Chines) [邢修三 1986 中国科学A辑 29 501]

    [13]

    Bao J D 2009 Classical and Stochastic Simulation (1st Ed.) (Beijing: Science Press) p107 (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (第一版) (北京: 科学出版社)第107页]

    [14]

    Xing X S 1991 Chin. J. Mater. Res. 5 22 (in Chinese) [邢修三 1991 材料研究学报 5 22]

    [15]

    Hu G, Hao B L 1994 Stochastic Force and Nonlinear System (1st Ed.) (Shanghai: Shanghai Science and Technology Education Press) p127 (in Chinese) [胡岗, 赫柏林 1994 随机力与非线性系统 (第一版) (上海: 上海科技教育出版社) 第127页]

    [16]

    Xu Z M, Huang P 16 2006 Die. Mould Ind. 26 159 (in Chinese) [许中明, 黄平 2006 摩擦学学报 26 159]

    [17]

    RiedoE, GneccoE, Bennewitz R, Meyer E 2003 Phys. Rev. Lett. 91 084502

    [18]

    Jiang L R 2015 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese) [蒋利荣 2015 硕士学位论文 (成都: 西南交通大学)]

    [19]

    Li Z J, Zhang D T, Shao M 2009 Lubricat. Oil. 34 61 (in Chinese) [李助军, 张大童, 邵明 2009 润滑与密封 34 61]

    [20]

    Wang K S, Liu Q K, Zhang D Y 2009 Acta Phys. Sin. 58 89 (in Chinese) [王可胜, 刘全坤, 张德元 2009 58 89]

    [21]

    Ma L 2009 M. S. Thesis (Chengdu: Southwest Jiaotong University) (in Chinese) [马磊 2009 硕士学位论文 (成都: 西南交通大学)]

  • [1] 郭瑞雪, 艾保全. 可形变自驱动粒子在不对称周期管中的定向输运.  , 2023, 72(20): 200501. doi: 10.7498/aps.72.20230825
    [2] 应耀俊, 李海彬. 不对称双势阱中玻色-爱因斯坦凝聚体的动力学.  , 2023, 72(13): 130303. doi: 10.7498/aps.72.20230419
    [3] 张旭, 曹佳慧, 艾保全, 高天附, 郑志刚. 摩擦不对称耦合布朗马达的定向输运.  , 2020, 69(10): 100503. doi: 10.7498/aps.69.20191961
    [4] 赵文静, 丁梦光, 杨晓丽, 胡海云. 栅氧化层经时击穿的非平衡统计理论分析方法.  , 2020, 69(10): 100502. doi: 10.7498/aps.69.20200108
    [5] 苟学强, 张义军, 李亚珺, 陈明理. 闪电双向先导理论及观测:极性不对称、不稳定及间歇性.  , 2018, 67(20): 205201. doi: 10.7498/aps.67.20181079
    [6] 王治国, 张鹏, 陈家轩, 白清顺, 梁迎春. 单晶硅纳米切削中CC键断裂对金刚石刀具磨损的影响.  , 2015, 64(19): 198104. doi: 10.7498/aps.64.198104
    [7] 李丹, 胡海云. 基于局部放电理论的聚合物电介质击穿动力学理论研究.  , 2014, 63(11): 117701. doi: 10.7498/aps.63.117701
    [8] 沈红霞, 吴国祯, 王培杰. (R)-1,3丁二醇的手性不对称性:微分键极化率的研究.  , 2013, 62(15): 153301. doi: 10.7498/aps.62.153301
    [9] 周丽霞, 燕友果. 共面不对称条件下Ag+(4p,4d)(e,2e)反应三重微分截面的理论研究.  , 2012, 61(4): 043401. doi: 10.7498/aps.61.043401
    [10] 王可胜, 刘全坤, 张德元. D2钢系列涂层磨损性能的数值模拟.  , 2009, 58(13): 89-S93. doi: 10.7498/aps.58.89
    [11] 李体俊. 坐标算符本征矢的表示与不对称投影算符的积分.  , 2008, 57(7): 3969-3972. doi: 10.7498/aps.57.3969
    [12] 刘晶晶, 孙俊君, 胡海云, 邢修三. 海洋腐蚀条件下材料环境失效的寿命预测.  , 2005, 54(5): 2414-2417. doi: 10.7498/aps.54.2414
    [13] 刘元富, 张谷令, 王久丽, 刘赤子, 杨思泽. 脉冲高能量密度等离子体法制备TiN薄膜及其摩擦磨损性能研究.  , 2004, 53(2): 503-507. doi: 10.7498/aps.53.503
    [14] 邢修三. 非平衡统计信息理论.  , 2004, 53(9): 2852-2863. doi: 10.7498/aps.53.2852
    [15] 李眉娟, 胡海云, 邢修三. 多晶体金属疲劳寿命随晶粒尺寸变化的理论研究.  , 2003, 52(8): 2092-2095. doi: 10.7498/aps.52.2092
    [16] 张彦鹏, 唐天同, 付盘铭. 四能级系统极化拍频的不对称特性.  , 1999, 48(2): 242-249. doi: 10.7498/aps.48.242
    [17] 周光召, 苏肇冰. 时间反演对称和非平衡统计定常态(Ⅱ).  , 1981, 30(3): 401-409. doi: 10.7498/aps.30.401
    [18] 周光召, 苏肇冰. 时间反演对称和非平衡统计定常态(Ⅰ).  , 1981, 30(2): 164-171. doi: 10.7498/aps.30.164
    [19] 陈启洲, 胡宁. 奇异粒子衰变的上下不对称问题.  , 1964, 20(4): 374-377. doi: 10.7498/aps.20.374
    [20] 物理系金属物理教研室. 摩擦磨损物理的若干问题.  , 1959, 15(3): 145-156. doi: 10.7498/aps.15.145
计量
  • 文章访问数:  9112
  • PDF下载量:  150
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-03
  • 修回日期:  2018-05-23
  • 刊出日期:  2019-09-20

/

返回文章
返回
Baidu
map