搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于表面磁感应强度的铁磁构件应力恒磁表征方法

邓东阁 左苏 武新军

引用本文:
Citation:

基于表面磁感应强度的铁磁构件应力恒磁表征方法

邓东阁, 左苏, 武新军

A method of characterizing axial stress in ferromagnetic members using superficial magnetic flux density obtained from static magnetization by permanent magnet

Deng Dong-Ge, Zuo Su, Wu Xin-Jun
PDF
导出引用
  • 便捷获取铁磁承载构件应力对维护基础设施安全具有重要意义.其关键在于准确快速地确定随应力变化灵敏度高、线性度好的表征参数.现有电磁检测法一般在时变磁场线圈激励下,逐点分析实验结果来确定合适的表征参数,会带来线圈发热、涡流影响结果的问题,表征磁参数的确立繁琐.为此,本文提出基于表面磁感应强度的铁磁构件应力恒磁表征方法,采用永磁恒定磁化器产生全局衰减局部均匀的空间变化磁场作激励,用正交磁场测量单元拾取构件表面轴向和法向磁感应强度以表征应力.着重阐述基于表面磁感应强度的应力表征原理:根据退磁场理论、磁场强度切向连续性和磁场高斯定理,建立表面轴向和法向磁感应强度关于应力导函数之间的关系方程.最后开展实验验证.结果表明:根据该关系方程可快速准确地确定随应力灵敏度最高的表面磁感应强度,且其随应力变化线性度较好,拟合优度R2大于0.98,可作为应力表征磁参数.本文所提方法可为在线检测铁磁构件应力提供新途径.
    It is of great significance to obtain the information about the stress of load-bearing ferromagnetic members quickly in order to maintain the safety of the infrastructure. The key point is to accurately and quickly determine the characterization parameters which change sensitively and linearly with the stress. Among the existing electromagnetic methods of determining axial stress in ferromagnetic members, exciting coils are usually adopted to exert a time-varying magnetic field on the ferromagnetic members, which will induce the problems of winding coils, coil heating, and eddy current that influences the test results. What is worse is that it is inevitable to compare the experimental data point by point to determine the adequate magnetic parameter characterizing the stress, which influences the fast determining of the axial stress in ferromagnetic members. In order to break through these limitations, in this paper we propose a method of determining the axial stress in ferromagnetic members by using superficial magnetic flux density obtained from static magnetization in permanent magnets. In this method, permanent magnetizers are adopted to excite the overall damping and local uniform spatially-varying constant magnetic field on ferromagnetic members. A testing probe including Hall chip array is adopted to measure the superficial axial and radial magnetic flux density to determine the axial stress of the ferromagnetic member. The principle is elaborated to choose the adequate superficial magnetic flux density fast and precisely for characterizing the axial stress in ferromagnetic members. According to the theory of demagnetizing field, the continuity of the tangential magnetic field strength and Gauss's law for magnetism, the relational equation between the derivative of superficial axial magnetic flux density with the stress and the derivative of superficial radial magnetic flux density with the stress is established. Then, an experiment is conducted to verify the proposed method. The experimental results show that according to this relational equation, the superficial magnetic flux density with the highest stress sensitivity can be determined quickly and accurately. What is more, the linearity of the superficial magnetic flux density varying with the stress is good, and the goodness of the corresponding linear fitting R2 is greater than 0.98. It means that the determined superficial magnetic flux density can be used as a feature parameter to characterize the stress in ferromagnetic members. The proposed method of determining the axial stress in this paper can provide a new way of on-line detecting the working stress in ferromagnetic components.
      通信作者: 武新军, xinjunwu@mail.hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51477059)资助的课题.
      Corresponding author: Wu Xin-Jun, xinjunwu@mail.hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51477059).
    [1]

    Cho S, Yim J, Shin S W, Jung H, Yun C, Wang M L 2013 J. Bridge. Eng. 18 748

    [2]

    Fu D, Guo H X, Cheng X H, Luo B, Rao X Y 2012 Rock. Soil. Mech. 33 2247 (in Chinese)[付丹, 郭红仙, 程晓辉, 罗斌, 饶枭宇 2012 岩土力学 33 2247]

    [3]

    Ji B H, Cheng M, Fu Z Q, Chen X F, Sun Y Y 2015 J. Cent. South Univ. (Science and Technoloy) 46 2620 (in Chinese)[吉伯海, 程苗, 傅中秋, 陈雄飞, 孙媛媛 2015 中南大学学报(自然科学版) 46 2620]

    [4]

    Zeng J W, Su L H, Xu L P, Zhang X F, Zhang Q D 2014 Chin. J. Mech. Engineer. 50 17 (in Chinese)[曾杰伟, 苏兰海, 徐立坪, 张晓峰, 张清东 2014 机械工程学报 50 17]

    [5]

    Jiles D C, Devine M K 1994 J. Appl. Phys. 76 7015

    [6]

    Sablik M J, Rubin S W, Riley L A, Jiles D C, Kaminski D A, Biner S B 1993 J. Appl. Phys. 74 480

    [7]

    Sablik M J, Jiles D C 1993 IEEE Trans. Magn. 29 2113

    [8]

    Jarosevic A https://link.springer.com/chapter/10.1007

    [9]

    Sumitro S, Wang M L 2005 Struct. Control Health Monit. 12 445

    [10]

    Tang D D, Huang S L, Chen W M, Jiang J S 2008 Smart Mater. Struct. 17 025019

    [11]

    Wang S L, Wang W, Su S Q, Zhang S F 2005 J. Xi'an Univ. Sci. Tech. 25 288 (in Chinese)[王社良, 王威, 苏三庆, 张少峰 2005 西安科技大学学报 25 288]

    [12]

    Chen W M, Jiang J S, Zhang P, Liu L, Liu X L 2010 J. Sci. Instrum. 31 794 (in Chinese)[陈伟民, 姜建山, 章鹏, 刘琳, 刘小亮 2010 仪器仪表学报 31 794]

    [13]

    Zhang P, Liu L, Chen W M 2013 Acta Phys. Sin. 62 177501 (in Chinese)[章鹏, 刘琳, 陈伟民 2013 62 177501]

    [14]

    Obluk P, Fabo P, Tk J 2013 Proc. Eng. 65 273

    [15]

    Zhao Y, Wang M L 2008 Proc. SPIE 6934 69340R

    [16]

    Zhang R, Duan Y, Or S W, Zhao Y 2014 Sensors 14 13644

    [17]

    Deng D G, Wu X J, Zuo S 2016 Acta Phys. Sin. 65 148101 (in Chinese)[邓东阁, 武新军, 左苏 2016 65 148101]

    [18]

    Deng D G, Wu X J 2015 Acta Phys. Sin. 64 237503 (in Chinese)[邓东阁, 武新军 2015 64 237503]

    [19]

    Deng D G, Wu X J 2018 J. Magn. Magn. Mater. 449 243

    [20]

    Deng D G, Wu X J, Zuo S 2016 Sensors 16 1650

    [21]

    Duan Y F, Zhang R, Zhao Y, Or S W, Fan K Q, Tang Z F 2012 J. Appl. Phys. 111 07E516

    [22]

    Duan Y F, Zhang R, Zhao Y, Or S W, Fan K Q 2011 Tang Z F J. Zhejiang Univ. -SC. A 12 895

    [23]

    Duan Y F, Zhang R, Dong C Z, Luo Y Z, Or S W, Zhao Y, Fan K Q 2016 Int. J. Struct. Stab. Dyn. 16 1640016

    [24]

    Zhang R 2016 Ph. D. Dissertation (Hangzhou:Zhejiang University) (in Chinese)[张茹 2016 博士学位论文(杭州:浙江大学)]

    [25]

    Li M, Tan T C, Ma Q S 2011 Mech. Adc. Mater. Struc. 33 73 (in Chinese)[李敏, 谭天才, 马秋生 2011 力学与实践 33 73]

    [26]

    Jiles D C 1995 J. Phys. D:Appl. Phys. 28 1537

    [27]

    Zan H P, Xu Q M, Zhang Y K 2009 J. Xi'an Univ. Arch. (Natural Science Edition) 41 409 (in Chinese)[昝会萍, 许启明, 张引科 2009 西安建筑科技大学学报(自然科学版) 41 409]

    [28]

    Zan H P 2008 M. S. Dissertation (Xi'an:Xi'an University of Architecture and Technology) (in Chinese)[昝会萍 2008 硕士学位论文(西安:西安建筑科技大学)]

    [29]

    Xu M X, Xu M Q, Li J W, Ma S S, Xing H Y 2012 J. Appl. Phys. 112 93902

    [30]

    Ding X, Wu X J, Wang Y G 2014 Ultrasonics 54 914

  • [1]

    Cho S, Yim J, Shin S W, Jung H, Yun C, Wang M L 2013 J. Bridge. Eng. 18 748

    [2]

    Fu D, Guo H X, Cheng X H, Luo B, Rao X Y 2012 Rock. Soil. Mech. 33 2247 (in Chinese)[付丹, 郭红仙, 程晓辉, 罗斌, 饶枭宇 2012 岩土力学 33 2247]

    [3]

    Ji B H, Cheng M, Fu Z Q, Chen X F, Sun Y Y 2015 J. Cent. South Univ. (Science and Technoloy) 46 2620 (in Chinese)[吉伯海, 程苗, 傅中秋, 陈雄飞, 孙媛媛 2015 中南大学学报(自然科学版) 46 2620]

    [4]

    Zeng J W, Su L H, Xu L P, Zhang X F, Zhang Q D 2014 Chin. J. Mech. Engineer. 50 17 (in Chinese)[曾杰伟, 苏兰海, 徐立坪, 张晓峰, 张清东 2014 机械工程学报 50 17]

    [5]

    Jiles D C, Devine M K 1994 J. Appl. Phys. 76 7015

    [6]

    Sablik M J, Rubin S W, Riley L A, Jiles D C, Kaminski D A, Biner S B 1993 J. Appl. Phys. 74 480

    [7]

    Sablik M J, Jiles D C 1993 IEEE Trans. Magn. 29 2113

    [8]

    Jarosevic A https://link.springer.com/chapter/10.1007

    [9]

    Sumitro S, Wang M L 2005 Struct. Control Health Monit. 12 445

    [10]

    Tang D D, Huang S L, Chen W M, Jiang J S 2008 Smart Mater. Struct. 17 025019

    [11]

    Wang S L, Wang W, Su S Q, Zhang S F 2005 J. Xi'an Univ. Sci. Tech. 25 288 (in Chinese)[王社良, 王威, 苏三庆, 张少峰 2005 西安科技大学学报 25 288]

    [12]

    Chen W M, Jiang J S, Zhang P, Liu L, Liu X L 2010 J. Sci. Instrum. 31 794 (in Chinese)[陈伟民, 姜建山, 章鹏, 刘琳, 刘小亮 2010 仪器仪表学报 31 794]

    [13]

    Zhang P, Liu L, Chen W M 2013 Acta Phys. Sin. 62 177501 (in Chinese)[章鹏, 刘琳, 陈伟民 2013 62 177501]

    [14]

    Obluk P, Fabo P, Tk J 2013 Proc. Eng. 65 273

    [15]

    Zhao Y, Wang M L 2008 Proc. SPIE 6934 69340R

    [16]

    Zhang R, Duan Y, Or S W, Zhao Y 2014 Sensors 14 13644

    [17]

    Deng D G, Wu X J, Zuo S 2016 Acta Phys. Sin. 65 148101 (in Chinese)[邓东阁, 武新军, 左苏 2016 65 148101]

    [18]

    Deng D G, Wu X J 2015 Acta Phys. Sin. 64 237503 (in Chinese)[邓东阁, 武新军 2015 64 237503]

    [19]

    Deng D G, Wu X J 2018 J. Magn. Magn. Mater. 449 243

    [20]

    Deng D G, Wu X J, Zuo S 2016 Sensors 16 1650

    [21]

    Duan Y F, Zhang R, Zhao Y, Or S W, Fan K Q, Tang Z F 2012 J. Appl. Phys. 111 07E516

    [22]

    Duan Y F, Zhang R, Zhao Y, Or S W, Fan K Q 2011 Tang Z F J. Zhejiang Univ. -SC. A 12 895

    [23]

    Duan Y F, Zhang R, Dong C Z, Luo Y Z, Or S W, Zhao Y, Fan K Q 2016 Int. J. Struct. Stab. Dyn. 16 1640016

    [24]

    Zhang R 2016 Ph. D. Dissertation (Hangzhou:Zhejiang University) (in Chinese)[张茹 2016 博士学位论文(杭州:浙江大学)]

    [25]

    Li M, Tan T C, Ma Q S 2011 Mech. Adc. Mater. Struc. 33 73 (in Chinese)[李敏, 谭天才, 马秋生 2011 力学与实践 33 73]

    [26]

    Jiles D C 1995 J. Phys. D:Appl. Phys. 28 1537

    [27]

    Zan H P, Xu Q M, Zhang Y K 2009 J. Xi'an Univ. Arch. (Natural Science Edition) 41 409 (in Chinese)[昝会萍, 许启明, 张引科 2009 西安建筑科技大学学报(自然科学版) 41 409]

    [28]

    Zan H P 2008 M. S. Dissertation (Xi'an:Xi'an University of Architecture and Technology) (in Chinese)[昝会萍 2008 硕士学位论文(西安:西安建筑科技大学)]

    [29]

    Xu M X, Xu M Q, Li J W, Ma S S, Xing H Y 2012 J. Appl. Phys. 112 93902

    [30]

    Ding X, Wu X J, Wang Y G 2014 Ultrasonics 54 914

  • [1] 李恺翔, 刘润聪. 运动感应涡流磁场检测中的激励磁场优化设计方法.  , 2023, 72(16): 168105. doi: 10.7498/aps.72.20230064
    [2] 陈彦君, 王圣业, 符翔, 刘伟. 基于νt尺度方程的雷诺应力模型初步研究.  , 2022, 71(16): 164701. doi: 10.7498/aps.71.20220417
    [3] 苏徐昆, 冷永刚, 张雨阳, 范胜波. 单面双极性磁铁空间磁感应强度模型.  , 2021, 70(16): 167501. doi: 10.7498/aps.70.20210448
    [4] 高鹏飞, 刘铁, 柴少伟, 董蒙, 王强. 磁感应强度和冷却速率对Tb0.27Dy0.73Fe1.95合金凝固过程中取向行为的影响.  , 2016, 65(3): 038104. doi: 10.7498/aps.65.038104
    [5] 邓东阁, 武新军, 左苏. 基于永磁恒定磁场激励的起始磁化曲线测量.  , 2016, 65(14): 148101. doi: 10.7498/aps.65.148101
    [6] 张世功, 吴先梅, 张碧星. 基于迟滞应力应变关系的非线性声学检测理论与方法研究.  , 2014, 63(19): 194302. doi: 10.7498/aps.63.194302
    [7] 郭春生, 万宁, 马卫东, 张燕峰, 熊聪, 冯士维. 恒定温度应力加速实验失效机理一致性快速判别方法.  , 2013, 62(6): 068502. doi: 10.7498/aps.62.068502
    [8] 谢立强, 吴学忠, 李圣怡, 王浩旭, 董培涛. 基于剪应力检测的石英微结构及其陀螺效应研究.  , 2010, 59(10): 6896-6901. doi: 10.7498/aps.59.6896
    [9] 邸玉贤, 计欣华, 胡 明, 秦玉文, 陈金龙. 基片曲率法在多孔硅薄膜残余应力检测中的应用.  , 2006, 55(10): 5451-5454. doi: 10.7498/aps.55.5451
    [10] 郑世旺, 乔永芬. 准坐标下广义非保守系统Lagrange方程的积分因子与守恒定理.  , 2006, 55(7): 3241-3245. doi: 10.7498/aps.55.3241
    [11] 张永康, 孔德军, 冯爱新, 鲁金忠, 张雷洪, 葛 涛. 涂层界面结合强度检测研究(Ⅰ):涂层结合界面应力的理论分析.  , 2006, 55(6): 2897-2900. doi: 10.7498/aps.55.2897
    [12] 张永康, 孔德军, 冯爱新, 鲁金忠, 葛 涛. 涂层界面结合强度检测研究(Ⅱ):涂层结合界面应力检测系统.  , 2006, 55(11): 6008-6012. doi: 10.7498/aps.55.6008
    [13] 乔永芬, 李仁杰, 孙丹娜. 非线性非完整系统Raitzin正则方程的Hojman守恒定理.  , 2005, 54(2): 490-495. doi: 10.7498/aps.54.490
    [14] 乔永芬, 张耀良, 赵淑红. 完整非保守系统Raitzin正则运动方程的积分因子和守恒定理.  , 2002, 51(8): 1661-1665. doi: 10.7498/aps.51.1661
    [15] 肖奕. 孤子方程不同求解方法之间的关系.  , 1990, 39(5): 677-684. doi: 10.7498/aps.39.677
    [16] 张裕恒, 王军. 超导弱连接的电压磁场关系(Ⅱ).  , 1984, 33(7): 959-966. doi: 10.7498/aps.33.959
    [17] 张裕恒, 王军. 超导弱连接的电压磁场关系(Ⅰ).  , 1984, 33(7): 952-958. doi: 10.7498/aps.33.952
    [18] 秦运文. 存在恒定外电、磁场时的等离子体动力学方程.  , 1982, 31(4): 419-426. doi: 10.7498/aps.31.419
    [19] 吴杭生, 蒋建华, 应润杰. 超导膜的能隙和磁场的依赖关系.  , 1966, 22(7): 770-780. doi: 10.7498/aps.22.770
    [20] 龙期威, 何青, 周敬. 钼单晶临界切应力的温度依赖关系.  , 1965, 21(6): 1264-1275. doi: 10.7498/aps.21.1264
计量
  • 文章访问数:  6361
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-29
  • 修回日期:  2018-05-18
  • 刊出日期:  2018-09-05

/

返回文章
返回
Baidu
map