搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

X-两环结构的光学特性研究

潘庭婷 曹文 邓彩松 王鸣 夏巍 郝辉

引用本文:
Citation:

X-两环结构的光学特性研究

潘庭婷, 曹文, 邓彩松, 王鸣, 夏巍, 郝辉

Optical property of X-two ring structure

Pan Ting-Ting, Cao Wen, Deng Cai-Song, Wang Ming, Xia Wei, Hao Hui
PDF
导出引用
  • 提出了一种X-两环的金属周期性阵列结构,该结构由两个同心圆环包围中心X型构成.利用时域有限差分算法研究了该结构的光学特性.计算表明,当光入射到金属表面时,能够在结构中产生法诺共振现象,并在不同的位置下产生共振谷.同时,共振谷的出现又明显依赖于结构的相对参数(X的臂长、内外环的距离、内外环宽度、周期、环数、X所呈的角度),从而可以通过调节结构的相对参数来实现对结构的共振强度及共振谷位置的调控.另外,进一步分析了在不同环境折射率条件下该结构共振谷的变化规律,可以得出该结构也对周围的环境折射率有着较高的敏感度,最高可达1300 nm/RIU.结果表明,该结构在环境折射率传感器及某些光子器件的应用方面有着潜在的价值.
    In this paper, the metal periodic array structure of X-two ring based on the principle of Fano resonance is proposed, which is composed of two concentric rings around the center X. The optical properties of the structure are investigated by using the finite difference time domain method. According to the simulated transmission spectra, electric field distribution and charge distribution, when linearly polarized light is incident to the metal surface, Fano resonance can be excited and the interaction between resonance modes can be produced in the structure of X-two ring, which can make resonance valleys generated at different positions. Fano resonance is mainly formed by the coherent interference between a bright mode with the larger radiation broadening and a dark mode with the weak radiation broadening, thus the structural resonance valley of X-two ring based on Fano resonance is strongly dependent on the relative parameters of the structure (the arm length of X, the distance between the inner ring and outer ring, the width of the inner ring and outer ring, the period, the number of ring, and the angle of X). In other words, over the wavelength range of 450 nm to 3000 nm, the intensity and position of the structural resonance valley are adjustable as the change of the relative geometric parameters of the structure. In addition, due to weak radiation damping and strong local electromagnetic field enhancement of Fano resonance, the resonance frequency and line type can significantly shift with the change of the environmental refractive index. Therefore, the further analysis of the variation of the structural resonance valley under the conditions of different refractive indices can be concluded that the structure of X-two ring has a higher sensitivity to the refractive index of surrounding environment, up to 1300 nm/RIU. The above results show that the structure of X-two ring not only is simple, economical, compact and efficient, but also has great potential applications in refractive index sensors and some photonic devices.
      通信作者: 王鸣, wangming@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51775283,51405240)、江苏省自然科学基金(批准号:BK20161559)、江苏省高校自然科学研究项目(批准号:16KJB510018)和江苏省高校研究生培养创新工程(批准号:KYLX16_1289)资助的课题.
      Corresponding author: Wang Ming, wangming@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51775283, 51405240), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161559), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No. 16KJB510018), and the Postgraduate Research and Innovation Project of the University of Jiangsu Province, China (Grant No. KYLX16_1289).
    [1]

    Funston A M, Novo C, Davis T J, Mulvaney P 2009 Nano Lett. 9 1651

    [2]

    Yun B F, Hu G H, Cong J W, Cui Y P 2014 Plasmonics 9 691

    [3]

    Tamma V A, Cui Y, Zhou J, Park W 2013 Nanoscale 5 1592

    [4]

    Verellen N, van Dorpe P, Huang C, Lodewijks K, Vandenbosch G A E, Lagae L, Moshchalkov V V 2011 Nano Lett. 11 391

    [5]

    Fu Y H, Zhang J B, Yu Y F, Lukyanchuk B 2012 ACS Nano 6 5130

    [6]

    Zhou L, Fu X F, Yu L, Zhang X, Yu X F, Hao Z H 2009 Appl. Phys. Lett. 94 153102

    [7]

    Gong H M, Zhou L, Su X R, Xiao S, Liu S D, Wang Q Q 2009 Adv. Funct. Mater. 19 298

    [8]

    Wu D J, Jiang S M, Liu X J 2011 J. Phys. Chem. C 115 23797

    [9]

    Zhang Q, Wen X, Li G, Ruan Q, Wang J, Xiong Q 2013 ACS Nano 7 11071

    [10]

    Pena-Rodriguez O, Rivera A, Campoy-Quiles M, Pal U 2013 Nanoscale 5 209

    [11]

    Fedotov V A, Rose M, Prosvirnin S L, Papasimakis N, Zheludev N I 2007 Phys. Rev. Lett. 99 147401

    [12]

    Huo Y, Jia T, Zhang Y, Zhao H, Zhang S, Feng D, Sun Z 2013 Sensors 13 11350

    [13]

    Ye J, Wen F, Sobhani H, Lassiter J B, van Dorpe P, Nordlander P, Halas N J 2012 Nano Lett. 12 1660

    [14]

    Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D H, Sun Z R 2014 Appl. Phys. Lett. 104 113104

    [15]

    Lu Y, Tohmyoh H, Saka M 2012 Thin Solid Films 520 3448

    [16]

    Verellen N, van Dorpe P, Vercruysse D, Vandenbosch G A E, Lagae L, Moshchalkov V V 2011 Opt. Express 19 11034

    [17]

    Lu H, Liu X, Mao D, Wang G X 2012 Opt. Lett. 37 3780

    [18]

    Li B X, Li H J, Zeng L L, Zhan S P, He Z H, Chen Z Q, Xu H 2016 J. Lightwave Technol. 34 3342

    [19]

    Deng Z L, Zhang S, Wang G P 2016 Nanoscale 8 1588

    [20]

    Deng Z L, Yogesh N, Chen X D, Chen W J, Dong J W, Ouyang Z B, Wang G P 2015 Sci. Rep. 5 18461

    [21]

    Liu G D, Zhai X, Wang L L, Wang B X, Lin Q, Shang X J 2016 Plasmonics 11 381

    [22]

    Deng Z L, Fu T, Ouyang Z B, Wang G P 2016 Appl. Phys. Lett. 108 081109

    [23]

    Deng Z L, Zhang S A, Wang G P 2016 Opt. Express 24 23118

    [24]

    Deng Z L, Dong J W 2013 Opt. Express 21 20291

    [25]

    Ahmadivand A, Sinha R, Pala N 2017 Opt. Laser Technol. 90 65

  • [1]

    Funston A M, Novo C, Davis T J, Mulvaney P 2009 Nano Lett. 9 1651

    [2]

    Yun B F, Hu G H, Cong J W, Cui Y P 2014 Plasmonics 9 691

    [3]

    Tamma V A, Cui Y, Zhou J, Park W 2013 Nanoscale 5 1592

    [4]

    Verellen N, van Dorpe P, Huang C, Lodewijks K, Vandenbosch G A E, Lagae L, Moshchalkov V V 2011 Nano Lett. 11 391

    [5]

    Fu Y H, Zhang J B, Yu Y F, Lukyanchuk B 2012 ACS Nano 6 5130

    [6]

    Zhou L, Fu X F, Yu L, Zhang X, Yu X F, Hao Z H 2009 Appl. Phys. Lett. 94 153102

    [7]

    Gong H M, Zhou L, Su X R, Xiao S, Liu S D, Wang Q Q 2009 Adv. Funct. Mater. 19 298

    [8]

    Wu D J, Jiang S M, Liu X J 2011 J. Phys. Chem. C 115 23797

    [9]

    Zhang Q, Wen X, Li G, Ruan Q, Wang J, Xiong Q 2013 ACS Nano 7 11071

    [10]

    Pena-Rodriguez O, Rivera A, Campoy-Quiles M, Pal U 2013 Nanoscale 5 209

    [11]

    Fedotov V A, Rose M, Prosvirnin S L, Papasimakis N, Zheludev N I 2007 Phys. Rev. Lett. 99 147401

    [12]

    Huo Y, Jia T, Zhang Y, Zhao H, Zhang S, Feng D, Sun Z 2013 Sensors 13 11350

    [13]

    Ye J, Wen F, Sobhani H, Lassiter J B, van Dorpe P, Nordlander P, Halas N J 2012 Nano Lett. 12 1660

    [14]

    Huo Y Y, Jia T Q, Zhang Y, Zhao H, Zhang S A, Feng D H, Sun Z R 2014 Appl. Phys. Lett. 104 113104

    [15]

    Lu Y, Tohmyoh H, Saka M 2012 Thin Solid Films 520 3448

    [16]

    Verellen N, van Dorpe P, Vercruysse D, Vandenbosch G A E, Lagae L, Moshchalkov V V 2011 Opt. Express 19 11034

    [17]

    Lu H, Liu X, Mao D, Wang G X 2012 Opt. Lett. 37 3780

    [18]

    Li B X, Li H J, Zeng L L, Zhan S P, He Z H, Chen Z Q, Xu H 2016 J. Lightwave Technol. 34 3342

    [19]

    Deng Z L, Zhang S, Wang G P 2016 Nanoscale 8 1588

    [20]

    Deng Z L, Yogesh N, Chen X D, Chen W J, Dong J W, Ouyang Z B, Wang G P 2015 Sci. Rep. 5 18461

    [21]

    Liu G D, Zhai X, Wang L L, Wang B X, Lin Q, Shang X J 2016 Plasmonics 11 381

    [22]

    Deng Z L, Fu T, Ouyang Z B, Wang G P 2016 Appl. Phys. Lett. 108 081109

    [23]

    Deng Z L, Zhang S A, Wang G P 2016 Opt. Express 24 23118

    [24]

    Deng Z L, Dong J W 2013 Opt. Express 21 20291

    [25]

    Ahmadivand A, Sinha R, Pala N 2017 Opt. Laser Technol. 90 65

  • [1] 何欣波, 魏兵. 基于悬挂变量的显式无条件稳定时域有限差分亚网格算法.  , 2024, 73(8): 080202. doi: 10.7498/aps.73.20231813
    [2] 谢宝豪, 陈华俊, 孙轶. 多模光力系统中光力诱导透明引起的慢光效应.  , 2023, 72(15): 154203. doi: 10.7498/aps.72.20230663
    [3] 柴振霞, 刘伟, 杨小亮, 周云龙. 可变周期谐波平衡法求解周期性非定常涡脱落问题.  , 2019, 68(12): 124701. doi: 10.7498/aps.68.20190126
    [4] 孙龙, 任昊, 冯大政, 王石语, 邢孟道. 一种新的基于频域有限差分方法的小周期有机太阳能电池的光电特性.  , 2018, 67(17): 178102. doi: 10.7498/aps.67.20180821
    [5] 王维, 高社生, 孟阳. 型谐振腔结构的光学透射特性.  , 2017, 66(1): 017301. doi: 10.7498/aps.66.017301
    [6] 王辉, 黄志祥, 吴先良, 任信钢, 吴博. 双色散模型的辛时域有限差分算法.  , 2014, 63(7): 070203. doi: 10.7498/aps.63.070203
    [7] 龚建强, 梁昌洪. 精确提取一维互易有限周期性结构色散特性的宏元胞法.  , 2013, 62(19): 199203. doi: 10.7498/aps.62.199203
    [8] 徐新河, 吴夏, 肖绍球, 甘月红, 王秉中. 磁电超材料折射率特性分析.  , 2013, 62(8): 084101. doi: 10.7498/aps.62.084101
    [9] 徐新河, 肖绍球, 甘月红, 王秉中. 周期性磁谐振材料本构参数的理论分析.  , 2013, 62(10): 104105. doi: 10.7498/aps.62.104105
    [10] 罗松, 付统, 张中月. 内嵌银纳米棒圆形银缝隙结构中的法诺共振现象.  , 2013, 62(14): 147303. doi: 10.7498/aps.62.147303
    [11] 颛孙旭, 马西奎. 一种适用于任意阶空间差分时域有限差分方法的色散介质通用吸收边界条件算法.  , 2012, 61(11): 110206. doi: 10.7498/aps.61.110206
    [12] 潘安, 范军, 卓琳凯. 周期性加隔板有限长圆柱壳声散射.  , 2012, 61(21): 214301. doi: 10.7498/aps.61.214301
    [13] 鲁思龙, 吴先良, 任信钢, 梅诣偲, 沈晶, 黄志祥. 色散周期结构的辅助场时域有限差分法分析.  , 2012, 61(19): 194701. doi: 10.7498/aps.61.194701
    [14] 张志东, 赵亚男, 卢东, 熊祖洪, 张中月. 基于圆弧谐振腔的金属-介质-金属波导滤波器的数值研究.  , 2012, 61(18): 187301. doi: 10.7498/aps.61.187301
    [15] 徐新河, 肖绍球, 甘月红, 付崇芳, 王秉中. 交指电容加载的周期性对称负磁导率人工材料研究.  , 2012, 61(12): 124103. doi: 10.7498/aps.61.124103
    [16] 章海锋, 刘少斌, 孔祥鲲. 横磁模式下二维非磁化等离子体光子晶体的线缺陷特性研究.  , 2011, 60(2): 025215. doi: 10.7498/aps.60.025215
    [17] 魏兵, 董宇航, 王飞, 李存志. 基于移位算子时域有限差分的色散薄层节点修正算法.  , 2010, 59(4): 2443-2450. doi: 10.7498/aps.59.2443
    [18] 吴俊芳, 孙明昭, 张淳民. 左手材料的响应频段和单元尺寸关系的研究.  , 2009, 58(6): 3844-3847. doi: 10.7498/aps.58.3844
    [19] 张东科, 张冶文, 赫 丽, 李宏强, 陈 鸿. 利用集总L-C元件构造的一维metamaterials特性的实验研究.  , 2005, 54(2): 768-772. doi: 10.7498/aps.54.768
    [20] 刘少斌, 莫锦军, 袁乃昌. 各向异性磁等离子体的辅助方程FDTD算法.  , 2004, 53(7): 2233-2236. doi: 10.7498/aps.53.2233
计量
  • 文章访问数:  5711
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-04
  • 修回日期:  2018-04-04
  • 刊出日期:  2018-08-05

/

返回文章
返回
Baidu
map