-
噪声免疫腔增强光外差分子光谱技术(NICE-OHMS)由于结合了频率调制光谱与腔增强光谱两种技术,不仅可以将激光耦合到高精细度谐振腔大幅提高腔内功率,还可以实现低气压样品气体的高灵敏测量,因此基于该技术可以实现分子吸收线的饱和,获得亚多普勒光谱,从而能作为激光频率锁定的参考.本文基于光纤激光器的NICE-OHMS技术,将光纤激光器频率锁定到NH3的亚多普勒吸收线上.首先分析了基于Pound-Drever-Hall和DeVoe-Brewer技术实现激光到腔模和调制频率到腔自由光谱区频率锁定的性能,之后在腔内气压为70 mTorr条件下,测量了半高全宽为2.05 MHz的NH3亚多普勒信号,最后将1.53 μm的光纤激光器频率锁定到该亚多普勒吸收线上,相对频率偏差为16.3 kHz,阿伦方差结果显示,136 s积分时间下频率稳定度达到1.6×10-12.
-
关键词:
- 噪声免疫腔增强光外差分子光谱技术 /
- 光纤激光器 /
- 亚多普勒吸收线 /
- 频率稳定度
Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) is a powerful tool for trace gas detection, which is based on the combination of frequency modulation spectroscopy (FMS) for reduction of 1/f noise, especially residual intensity noise, and cavity enhanced absorption spectroscopy (CEAS) for prolonging the interaction length between the laser and the targeted gas. Because of the locking of modulation frequency in FMS to the free spectral range (FSR) of the cavity, NICE-OHMS is immune to the frequency-to-amplitude noise, which is a main limitation to CEAS. Moreover, due to the building of high power inside the cavity, NICE-OHMS can easily saturate the molecular absorption thus obtain sub-Doppler spectroscopy, which possess a high resolution and odd symmetry, and thus can act as a frequency discriminator for the locking of the laser frequency to the transition center. In this paper, a fiber laser based NICE-OHMS system is established and the laser frequency is locked to the sub-Doppler absorption line of NH3 by sub-Doppler NICE-OHMS. To avoid the complex design of high-Q-factor bandpass filter at radio frequency, the frequency νpdh, used for Pound-Drever-Hall (PDH) locking, is generated by the beat frequencies νfsr and νdvb, which are used for NICE-OHMS signal and DeVoe-Brewer (DVB) locking, respectively. The performances of PDH and DVB locking are analysed by the frequency distribution deduced from the error signals, which result in frequency deviations of 4.3 kHz and 0.38 kHz, respectively. Then, the CEAS signal and NICE-OHMS signal in the dispersive phase for the measurement of NH3 at 1.53 μm under 70 mTorr are obtained, which show signal-to-noise ratios of 3.3 dB and 45.5 dB, respectively. Due to the high power built in the cavity, the sub-Doppler structure in the NICE-OHMS signal is obtained in the center of the absorption tansition with a satruation degree of 0.22, which is evaluated by the amplitude ratio between sub-Doppler and Doppler-broadened signals. The linewidth (full width at half maximum) of the sub-Doppler signal of 2.05 MHz is obtained, which is calibrated by the time interval between carrier and sideband. The free-running drift of the laser frequency is estimated by the NICE-OHMS signal and results in 50 MHz over 3 h. While, with locking, the relative deviation of the laser frequency is reduced to 16.3 kHz. In order to evaluate the long term stability of the system, the frequency deviation over 3 h is measured. The Allen deviation analysis shows that the white noise is the main noise of the system in the integration time shorter than 10 s. And the frequency stability can reach to 1.6×10-12 in an integration time of 136 s.-
Keywords:
- noise-immune cavity-enhanced optical heterodyne molecular spectroscopy /
- fiber laser /
- sub-Doppler structure /
- frequency stability
[1] Matthey R, Affolderbach C, Mileti G 2011 Opt. Lett. 36 3311
[2] Hall John L 2006 Rev. Mod. Phys. 78 1279
[3] Cancio Pastor P, Consolino L, Giusfredi G, de Natale P, Inguscio M, Yerokhin V A, Pachucki K 2012 Phys. Rev. Lett. 108 143001
[4] Arie A, Schiller S, Gustafson E K, Byer R L 1992 Opt. Lett. 17 1204
[5] Kazovsky L G 1986 J. Lightwave Technol. 4 182
[6] Ohmae N, Moriwaki S, Mio N 2010 Rev. Sci. Instrum. 81 073105
[7] Xiang L, Zhang X, Zhang J W, Ning Y Q, Hofmann W, Wang L J 2017 Chin. Phys. B 26 074209
[8] Hall J L, Hollberg L, Baer T, Robinson H G 1981 Appl. Phys. Lett. 39 680
[9] Kunz P D, Heavner T P, Jefferts S R 2013 Appl. Opt. 52 8048
[10] Webster S A, Oxborrow M, Gill P 2004 Opt. Lett. 29 1497
[11] Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641
[12] Ye J, Ma L S, Hall J L 1996 Opt. Lett. 21 1000
[13] Ma L S, Ye J, Dube P, Hall J L 1999 J. Opt. Soc. Am. B 16 2255
[14] Gianfrani L, Fox R W, Hollberg L 1999 J. Opt. Soc. Am. B 16 2247
[15] Ye J, Ma L S, Hall J L 1997 IEEE Trans. Instrum. Meas. 46 178
[16] Han H N, Zhang J W, Zhang Q, Zhang L, Wei Z Y 2012 Acta Phys. Sin. 61 164206 (in Chinese)[韩海年, 张金伟, 张青, 张龙, 魏志义 2012 61 164206]
[17] DeVoe R G, Brewer R G 1984 Phys. Rev. A 30 2827
[18] Zhao G, Hausmaninger T, Ma W, Axner O 2017 Opt. Lett. 42 3109
[19] Dinesan H, Fasci E, Castrillo A, Gianfrani L 2014 Opt. Lett. 39 2198
[20] van Leeuwen N J, Wilson A C 2004 J. Opt. Soc. Am. B 21 1713
[21] Curtis E A, Barwood G P, Huang G, Edwards C S, Gieseking B, Brewer P J 2017 J. Opt. Soc. Am. B 34 950
[22] Taubman M S, Myers T L, Cannon B D, Kelly J F, Williams R M 2004 Spectrochim. Acta A 60 3457
[23] Silander I, Hausmaninger T, Ma W G, Harren F J M, Axner O 2015 Opt. Lett. 40 439
[24] Schmidt F M, Foltynowicz A, Ma W G, Axner O 2007 J. Opt. Soc. Am. B 24 1392
[25] Dinesan H, Facsi E, Castrillo A, Gianfrani L 2014 Opt. Lett. 39 2198
[26] Saraf S, Berceau P, Stochino A, Byer R, Lipa J 2016 Opt. Lett. 41 2189
[27] Chen T L, Liu Y W 2017 Opt. Lett. 42 2447
[28] Ma W G, Silander I, Hausmaninger T, Axner O 2016 J. Quant. Spectrosc. Ra. 168 217
[29] Axner O, Ma W G, Foltynowicz A 2008 J. Opt. Soc. Am. B 25 1166
[30] Rothman L S, Jacaquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Charkerian C, Chance K, Coudert L H, Dana V, Devi M V, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139
[31] Ehlers P, Johansson A C, Silander I, Foltynowicz A, Axner O 2014 J. Opt. Soc. Am. B 31 2938
[32] Jia M Y, Zhao G, Hou J J, Tan W, Qiu X D, Ma W G, Zhang L, Dong L, Yin W B, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 128701 (in Chinese)[贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王宝, 肖连团, 贾锁堂 2016 65 128701]
[33] Ma W G, Tan W, Zhao G, Li Z X, Fu X F, Dong L, Zhang L, Yin W B, Jia S T 2014 Spectrosc. Spect. Anal. 34 2180 (in Chinese)[马维光, 谭巍, 赵刚, 李志新, 付小芳, 董磊, 张雷, 尹王宝, 贾锁堂 2014 光谱学与光谱分析 34 2180]
-
[1] Matthey R, Affolderbach C, Mileti G 2011 Opt. Lett. 36 3311
[2] Hall John L 2006 Rev. Mod. Phys. 78 1279
[3] Cancio Pastor P, Consolino L, Giusfredi G, de Natale P, Inguscio M, Yerokhin V A, Pachucki K 2012 Phys. Rev. Lett. 108 143001
[4] Arie A, Schiller S, Gustafson E K, Byer R L 1992 Opt. Lett. 17 1204
[5] Kazovsky L G 1986 J. Lightwave Technol. 4 182
[6] Ohmae N, Moriwaki S, Mio N 2010 Rev. Sci. Instrum. 81 073105
[7] Xiang L, Zhang X, Zhang J W, Ning Y Q, Hofmann W, Wang L J 2017 Chin. Phys. B 26 074209
[8] Hall J L, Hollberg L, Baer T, Robinson H G 1981 Appl. Phys. Lett. 39 680
[9] Kunz P D, Heavner T P, Jefferts S R 2013 Appl. Opt. 52 8048
[10] Webster S A, Oxborrow M, Gill P 2004 Opt. Lett. 29 1497
[11] Ludlow A D, Huang X, Notcutt M, Zanon-Willette T, Foreman S M, Boyd M M, Blatt S, Ye J 2007 Opt. Lett. 32 641
[12] Ye J, Ma L S, Hall J L 1996 Opt. Lett. 21 1000
[13] Ma L S, Ye J, Dube P, Hall J L 1999 J. Opt. Soc. Am. B 16 2255
[14] Gianfrani L, Fox R W, Hollberg L 1999 J. Opt. Soc. Am. B 16 2247
[15] Ye J, Ma L S, Hall J L 1997 IEEE Trans. Instrum. Meas. 46 178
[16] Han H N, Zhang J W, Zhang Q, Zhang L, Wei Z Y 2012 Acta Phys. Sin. 61 164206 (in Chinese)[韩海年, 张金伟, 张青, 张龙, 魏志义 2012 61 164206]
[17] DeVoe R G, Brewer R G 1984 Phys. Rev. A 30 2827
[18] Zhao G, Hausmaninger T, Ma W, Axner O 2017 Opt. Lett. 42 3109
[19] Dinesan H, Fasci E, Castrillo A, Gianfrani L 2014 Opt. Lett. 39 2198
[20] van Leeuwen N J, Wilson A C 2004 J. Opt. Soc. Am. B 21 1713
[21] Curtis E A, Barwood G P, Huang G, Edwards C S, Gieseking B, Brewer P J 2017 J. Opt. Soc. Am. B 34 950
[22] Taubman M S, Myers T L, Cannon B D, Kelly J F, Williams R M 2004 Spectrochim. Acta A 60 3457
[23] Silander I, Hausmaninger T, Ma W G, Harren F J M, Axner O 2015 Opt. Lett. 40 439
[24] Schmidt F M, Foltynowicz A, Ma W G, Axner O 2007 J. Opt. Soc. Am. B 24 1392
[25] Dinesan H, Facsi E, Castrillo A, Gianfrani L 2014 Opt. Lett. 39 2198
[26] Saraf S, Berceau P, Stochino A, Byer R, Lipa J 2016 Opt. Lett. 41 2189
[27] Chen T L, Liu Y W 2017 Opt. Lett. 42 2447
[28] Ma W G, Silander I, Hausmaninger T, Axner O 2016 J. Quant. Spectrosc. Ra. 168 217
[29] Axner O, Ma W G, Foltynowicz A 2008 J. Opt. Soc. Am. B 25 1166
[30] Rothman L S, Jacaquemart D, Barbe A, Chris Benner D, Birk M, Brown L R, Carleer M R, Charkerian C, Chance K, Coudert L H, Dana V, Devi M V, Flaud J M, Gamache R R, Goldman A, Hartmann J M, Jucks K W, Maki A G, Mandin J Y, Massie S T, Orphal J, Perrin A, Rinsland C P, Smith M A H, Tennyson J, Tolchenov R N, Toth R A, Auwera J V, Varanasi P, Wagner G 2005 J. Quant. Spectrosc. Ra. 96 139
[31] Ehlers P, Johansson A C, Silander I, Foltynowicz A, Axner O 2014 J. Opt. Soc. Am. B 31 2938
[32] Jia M Y, Zhao G, Hou J J, Tan W, Qiu X D, Ma W G, Zhang L, Dong L, Yin W B, Xiao L T, Jia S T 2016 Acta Phys. Sin. 65 128701 (in Chinese)[贾梦源, 赵刚, 侯佳佳, 谭巍, 邱晓东, 马维光, 张雷, 董磊, 尹王宝, 肖连团, 贾锁堂 2016 65 128701]
[33] Ma W G, Tan W, Zhao G, Li Z X, Fu X F, Dong L, Zhang L, Yin W B, Jia S T 2014 Spectrosc. Spect. Anal. 34 2180 (in Chinese)[马维光, 谭巍, 赵刚, 李志新, 付小芳, 董磊, 张雷, 尹王宝, 贾锁堂 2014 光谱学与光谱分析 34 2180]
计量
- 文章访问数: 6624
- PDF下载量: 203
- 被引次数: 0