-
Polarizing beam splitter (PBS) can separate the propagating directions of two incident orthogonally polarized light beams. However, conventional PBS and multi-layered metamaterial structures are complicated and neither of them can meet the requirements for broadband characteristics due to their resonant characters. In this paper, an anisotropic beam splitter based on metal slit array of the metal-dielectric structure is proposed in order to simplify the structure and improve the beam splitting efficiency. Because of the transverse momentum generated by the inhomogeneous interface, the transverse magnetic (TM) wave is negatively reflected from the surface of the gold film after it has entered into the slit with the waveguide mode of the plasma. When the free electrons on the metal surface oscillate, the transverse electric (TE) wave parallel to the grating direction can cause electrons to oscillate along the grating direction, so that the TE light cannot enter into the slit, resulting in specular reflection. The finite element method is used to study the effects of TM and TE polarized light such as negative reflection (NR) and specular reflection (SR). The results show that when the incident angle of the polarized light is set to be in a range from 20 to 70, the incident TM light has a strong NR of about 0.9, but the TE light is weakly reflected and decreases sharply with the increase of the wavelength. The ideal NR points of the beam splitter and the perfect symmetrical response of the reflection surface are calculated, and the ideal NR point satisfies P=/(2sin 0). When the incident light angle changes, the variations of the wavelength of the negative and zero order reflection peak are different from those of TM and TE wave, which is more conducive to the tuning of the interaction between light and grating structure. The NR and SR spectral reflectance of different polarized light beams are calculated by rigorous coupled-wave analysis, and the extinction ratios in the two cases are both 106. In addition, those designs of plasmonic splitters will pave the way for the practical applications of plasmonic devices in data storages and optical holography.
-
Keywords:
- surface plasmons /
- splitter /
- negative reflection /
- extinction ratio
[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667
[2] Pala R A, Liu J S, Barnard E S, Askarov D, Garnett E C, Fan S, Brongersma M L 2013 Nat. Commun. 4 2095
[3] Xu T, Wu Y K, Luo X G, Guo L J 2010 Nat. Commun. 1 59
[4] Monticone F, Estakhri N M, Alu A 2013 Phys. Rev. Lett. 110 203903
[5] Valentine J, Zhang S, Zentgraf T, Ulin A E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376
[6] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
[7] Yin X B, Ye Z L, Rho J, Wang Y, Zhang X 2013 Science 339 1405
[8] Zhang W G, Zhang Y X, Geng P C, Wang B, Li X L, Wang S, Yan T Y 2017 Acta Phys. Sin. 66 070704 (in Chinese) [张伟刚, 张严昕, 耿鹏程, 王标, 李晓兰, 王松, 严铁毅 2017 66 070704]
[9] Jofre M, Anzolin G, Steinlechner F, Oliverio N, Torres J P, Pruneri V, Mitchell M W 2012 Opt. Express 20 12247
[10] Assemat E, Picozzi A, Jauslin H R, Sugny D 2012 J. Opt. Soc. Am. B 29 559
[11] Zhang X, Liao Q H, Chen S W, Hu P, Yu T, Liu N H 2011 Acta Phys. Sin. 60 104205 (in Chinese) [张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华 2011 60 104205]
[12] Luo D, Sun X W, Dai H T, Demir H V 2011 Appl. Opt. 50 2316
[13] Wang Y P, Wang M P, Huang X Q 2011 Opt. Express 19 25535
[14] Nguyen H N, Lo Y L, Chen Y B, Yang T Y 2011 Appl. Opt. 50 415
[15] Wu Y R, Hollowell A E, Zhang C, Guo L J 2013 Sci. Rep. 3 1194
[16] Chen X, Yang F, Zhang C, Zhou J, Guo L J 2016 ACS Nano 10 4039
[17] Zheng J, Ye Z C, Sheng Z M, Zhang J 2015 11th Conference onLasers and Electro-Optics Pacific Rim Busan, South Korea, August 24-28, 2015 p1
[18] Ye Z C, Zheng J, Sun S, Guo L D, Shieh H P D 2013 IEEE J. Sel. Top. Quant. 19 4800205
[19] Ni X J, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427
[20] Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W J, Ward C A 1983 Appl. Opt. 22 1099
[21] Liu M L, Liu R J, Deng X B, Wang Y W, Lei H N 2010 Acta Phys. Sin. 59 4030 (in Chinese) [刘明礼, 刘仁杰, 邓晓斌, 王亚伟, 雷海娜 2010 59 4030]
[22] Pors A, Albrektsen O, Radko I P, Bozhevolnyi S I 2013 Sci. Rep. 3 2155
[23] Deng Z L, Zhang S, Wang G P 2016 Nanoscale 8 1588
[24] Deng Z L, Li X, Wang G P 2017 arXiv:170510171 [physics.optics]
-
[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T, Wolff P A 1998 Nature 391 667
[2] Pala R A, Liu J S, Barnard E S, Askarov D, Garnett E C, Fan S, Brongersma M L 2013 Nat. Commun. 4 2095
[3] Xu T, Wu Y K, Luo X G, Guo L J 2010 Nat. Commun. 1 59
[4] Monticone F, Estakhri N M, Alu A 2013 Phys. Rev. Lett. 110 203903
[5] Valentine J, Zhang S, Zentgraf T, Ulin A E, Genov D A, Bartal G, Zhang X 2008 Nature 455 376
[6] Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333
[7] Yin X B, Ye Z L, Rho J, Wang Y, Zhang X 2013 Science 339 1405
[8] Zhang W G, Zhang Y X, Geng P C, Wang B, Li X L, Wang S, Yan T Y 2017 Acta Phys. Sin. 66 070704 (in Chinese) [张伟刚, 张严昕, 耿鹏程, 王标, 李晓兰, 王松, 严铁毅 2017 66 070704]
[9] Jofre M, Anzolin G, Steinlechner F, Oliverio N, Torres J P, Pruneri V, Mitchell M W 2012 Opt. Express 20 12247
[10] Assemat E, Picozzi A, Jauslin H R, Sugny D 2012 J. Opt. Soc. Am. B 29 559
[11] Zhang X, Liao Q H, Chen S W, Hu P, Yu T, Liu N H 2011 Acta Phys. Sin. 60 104205 (in Chinese) [张旋, 廖清华, 陈淑文, 胡萍, 于天宝, 刘念华 2011 60 104205]
[12] Luo D, Sun X W, Dai H T, Demir H V 2011 Appl. Opt. 50 2316
[13] Wang Y P, Wang M P, Huang X Q 2011 Opt. Express 19 25535
[14] Nguyen H N, Lo Y L, Chen Y B, Yang T Y 2011 Appl. Opt. 50 415
[15] Wu Y R, Hollowell A E, Zhang C, Guo L J 2013 Sci. Rep. 3 1194
[16] Chen X, Yang F, Zhang C, Zhou J, Guo L J 2016 ACS Nano 10 4039
[17] Zheng J, Ye Z C, Sheng Z M, Zhang J 2015 11th Conference onLasers and Electro-Optics Pacific Rim Busan, South Korea, August 24-28, 2015 p1
[18] Ye Z C, Zheng J, Sun S, Guo L D, Shieh H P D 2013 IEEE J. Sel. Top. Quant. 19 4800205
[19] Ni X J, Emani N K, Kildishev A V, Boltasseva A, Shalaev V M 2012 Science 335 427
[20] Ordal M A, Long L L, Bell R J, Bell S E, Bell R R, Alexander R W J, Ward C A 1983 Appl. Opt. 22 1099
[21] Liu M L, Liu R J, Deng X B, Wang Y W, Lei H N 2010 Acta Phys. Sin. 59 4030 (in Chinese) [刘明礼, 刘仁杰, 邓晓斌, 王亚伟, 雷海娜 2010 59 4030]
[22] Pors A, Albrektsen O, Radko I P, Bozhevolnyi S I 2013 Sci. Rep. 3 2155
[23] Deng Z L, Zhang S, Wang G P 2016 Nanoscale 8 1588
[24] Deng Z L, Li X, Wang G P 2017 arXiv:170510171 [physics.optics]
计量
- 文章访问数: 6948
- PDF下载量: 214
- 被引次数: 0