-
利用反应显微成像谱仪开展了56 keV/u的Ne4+离子与羰基硫(OCS)气体的交叉碰撞实验,研究了Ne4+离子诱导的OCS3+的碎裂动力学.通过符合探测三个末态离子,重构了OCS3+离子三体碎裂对应的牛顿图和Dalitz图,并明确区分了直接解离和次序解离两种碎裂过程.重构了OCS3+离子解离过程的动能释放(KER)分布,发现其峰值在25 eV处,同时在18 eV处有肩膀结构的存在,其中25 eV左右的峰来源于直接解离过程,18 eV处的肩膀结构来源于次序解离和非次序解离两种过程.通过分析不同能量和不同电荷态下重离子碰撞实验所得到的KER谱,发现微扰强度不是影响态布居的主要因素.OCS3+次序解离中的第二步KER的峰值在6.2 eV处.结合以往的实验结果,我们得出结论:多电离态的分子发生次序碎裂的根源在于二价离子碎片存在亚稳态,而重构得到的第二步KER可以反映亚稳态离子的电子态信息.The fragmentation experiment of OCS3+ induced by 56 keV/u Ne4+ ions is performed using reaction microscope, and the corresponding dissociation dynamics is investigated. By detecting the three fragment ions in coincidence, the three-dimensional (3D) momenta of all ions and the corresponding kinetic energy release (KER) distributions are reconstructed. It is found that a peak maximum of the KER distribution is locates at about 25 eV, and a shoulder structure appears around 18 eV. This result is consistent with previous heavy ion experimental results with different perturbation strengths. Taking into account that the KER distribution is related to the initial state population of the OCS3+ parent ions, it can be concluded that the perturbation strength is not a decisive parameter leading to the initial state population of OCS3+ ions. We also reconstruct the Newton diagram and Dalitz plot for the three-body fragmentation of OCS3+ ion, from which the sequential dissociation is distinguished from nonsequential dissociation clearly. By analyzing the kinetic energy of ions from each fragmentation process, we find that the KER peak at 25 eV corresponds to nonsequential dissociation process, but the shoulder at 18 eV arises from both sequential and nonsequential dissociation processes. This phenomenon suggests that the parent OCS3+ ions in ground state and low excitation states tend to fragment through sequential dissociation, while those in high excitation states tend to fragment through nosequential dissociation. Furthermore, we reconstruct the KER distributions in the second fragmentation step of sequential dissociation, whose peak maximum is at 6.2 eV, corresponding to X3, 1+ and 1 metastable states of CO2+ ion. A similar KER distribution is obtained for the second fragmentation step of the OCS4+ ion. By comparing our experimental results with previous ones, we conclude that the origin of sequential dissociation process is the existence of metastable state, and the reconstructed KER in the second step reflects the initial state information about the metastable state.
-
Keywords:
- carbonyl sulphide /
- dissociation mechanism /
- sequential dissociation /
- kinetic energy release
[1] Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Döner R 2010 Phys. Rev. Lett. 104 103201
[2] Wang E, Shan X, Shen Z J, Li X Y, Gong M M, Tang Y G, Chen X J 2015 Phys. Rev. A 92 062713
[3] Singh R K, Lodha G S 2006 Phys. Rev. A 74 022708
[4] Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B, Gong Q H 2013 Phys. Rev. Lett. 110 103601
[5] Wang E, Shan X, Shen Z J, Gong M M, Tang Y G, Pan Y, Lau K C, Chen X J 2015 Phys. Rev. A 91 052711
[6] Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708
[7] Jana M R, Ray B, Ghosh P N, Safvan C P 2010 J. Phys. B:At. Mol. Opt. Phys. 43 215207
[8] Wales B, Motojima T, Matsumoto J, Long Z J, Liu W K, Shiromaru H, Sanderson J 2012 J. Phys. B:At. Mol. Opt. Phys. 45 045205
[9] Ramadhan A, Wales B, Gauthier I, MacDonald M, Zuin L, Sanderson J 2015 J. Phys:Conf. Ser. 635 112137
[10] Ramadhan A, Wales B, Karimi R, Gauthier I, MacDonald M, Zuin L, Sanderson J 2016 J. Phys. B:At. Mol. Opt. Phys. 49 215602
[11] Wales B, Bisson é, Karimi R, Beaulieu S, Ramadhan A, Giguère M, Long Z J, Liu W K, Kieffer J C, Légaré F, Sanderson J 2014 J. Electron. Spectrosc. Relat. Phenom. 195 332
[12] Shen Z J, Wang E, Gong M M, Shan X, Chen X J 2016 J. Chem. Phys. 145 234303
[13] Jana M R, Ghosh P N, Ray B, Bapat B, Kushawaha R K, Saha K, Prajapati I A, Safvan C P 2014 Eur. Phys. J. D 68 250
[14] Ding X Y, Haertelt M, Schlauderer S, Schuurman M S, Naumov A Y, Villeneuve D M, McKellar A R W, Corkum P B, Staudte A 2017 Phys. Rev. Lett. 118 153001
[15] Lundqvist M, Baltzer P, Edvardsson D, Karlsson L, Wannberg B 1995 Phys. Rev. Lett. 75 1058
[16] Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303
[17] Wang X, Zhang Y, Lu D, Lu G C, Wei B, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 Phys. Rev. A 90 062705
[18] Guillemin R, Decleva P, Stener M, Bomme C, Marin T, Journel L, Marchenko T, Kushawaha R K, Jänkälä K, Trcera N, Bowen K P, Lindle D W, Piancastelli M N, Simon M 2015 Nat. Commun. 6 7166
[19] Wu J, Kunitski M, Schmidt L Ph H, Jahnke T, Dörner R 2012 J. Chem. Phys. 137 104308
[20] Xu S, Ma X, Ren X, Senftleben A, Pflger T, Dorn A, Ullrich J 2011 Phys. Rev. A 83 052702
[21] Karimi R, Bisson é, Wales B, Beaulieu S, Giguère M, Long Z, Liu W K, Kieffer J C, Légaré F, Sanderson J 2013 J. Chem. Phys. 138 204311
[22] Khan A, Misra D 2016 J. Phys. B:At. Mol. Opt. Phys. 49 055201
[23] Zhu X L 2006 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences) (in Chinese)[朱小龙 2006 博士学位论文 (兰州:中国科学院近代物理研究所)]
-
[1] Neumann N, Hant D, Schmidt L Ph H, Titze J, Jahnke T, Czasch A, Schöffler M S, Kreidi K, Jagutzki O, Schmidt-Böcking H, Döner R 2010 Phys. Rev. Lett. 104 103201
[2] Wang E, Shan X, Shen Z J, Li X Y, Gong M M, Tang Y G, Chen X J 2015 Phys. Rev. A 92 062713
[3] Singh R K, Lodha G S 2006 Phys. Rev. A 74 022708
[4] Wu C, Wu C Y, Song D, Su H M, Yang Y D, Wu Z F, Liu X R, Liu H, Li M, Deng Y K, Liu Y Q, Peng L Y, Jiang H B, Gong Q H 2013 Phys. Rev. Lett. 110 103601
[5] Wang E, Shan X, Shen Z J, Gong M M, Tang Y G, Pan Y, Lau K C, Chen X J 2015 Phys. Rev. A 91 052711
[6] Yan S, Zhu X L, Zhang P, Ma X, Feng W T, Gao Y, Xu S, Zhao Q S, Zhang S F, Guo D L, Zhao D M, Zhang R T, Huang Z K, Wang H B, Zhang X J 2016 Phys. Rev. A 94 032708
[7] Jana M R, Ray B, Ghosh P N, Safvan C P 2010 J. Phys. B:At. Mol. Opt. Phys. 43 215207
[8] Wales B, Motojima T, Matsumoto J, Long Z J, Liu W K, Shiromaru H, Sanderson J 2012 J. Phys. B:At. Mol. Opt. Phys. 45 045205
[9] Ramadhan A, Wales B, Gauthier I, MacDonald M, Zuin L, Sanderson J 2015 J. Phys:Conf. Ser. 635 112137
[10] Ramadhan A, Wales B, Karimi R, Gauthier I, MacDonald M, Zuin L, Sanderson J 2016 J. Phys. B:At. Mol. Opt. Phys. 49 215602
[11] Wales B, Bisson é, Karimi R, Beaulieu S, Ramadhan A, Giguère M, Long Z J, Liu W K, Kieffer J C, Légaré F, Sanderson J 2014 J. Electron. Spectrosc. Relat. Phenom. 195 332
[12] Shen Z J, Wang E, Gong M M, Shan X, Chen X J 2016 J. Chem. Phys. 145 234303
[13] Jana M R, Ghosh P N, Ray B, Bapat B, Kushawaha R K, Saha K, Prajapati I A, Safvan C P 2014 Eur. Phys. J. D 68 250
[14] Ding X Y, Haertelt M, Schlauderer S, Schuurman M S, Naumov A Y, Villeneuve D M, McKellar A R W, Corkum P B, Staudte A 2017 Phys. Rev. Lett. 118 153001
[15] Lundqvist M, Baltzer P, Edvardsson D, Karlsson L, Wannberg B 1995 Phys. Rev. Lett. 75 1058
[16] Wei B, Zhang Y, Wang X, Lu D, Lu G C, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 J. Chem. Phys. 140 124303
[17] Wang X, Zhang Y, Lu D, Lu G C, Wei B, Zhang B H, Tang Y J, Hutton R, Zou Y 2014 Phys. Rev. A 90 062705
[18] Guillemin R, Decleva P, Stener M, Bomme C, Marin T, Journel L, Marchenko T, Kushawaha R K, Jänkälä K, Trcera N, Bowen K P, Lindle D W, Piancastelli M N, Simon M 2015 Nat. Commun. 6 7166
[19] Wu J, Kunitski M, Schmidt L Ph H, Jahnke T, Dörner R 2012 J. Chem. Phys. 137 104308
[20] Xu S, Ma X, Ren X, Senftleben A, Pflger T, Dorn A, Ullrich J 2011 Phys. Rev. A 83 052702
[21] Karimi R, Bisson é, Wales B, Beaulieu S, Giguère M, Long Z, Liu W K, Kieffer J C, Légaré F, Sanderson J 2013 J. Chem. Phys. 138 204311
[22] Khan A, Misra D 2016 J. Phys. B:At. Mol. Opt. Phys. 49 055201
[23] Zhu X L 2006 Ph. D. Dissertation (Lanzhou:Institute of Modern Physics, Chinese Academy of Sciences) (in Chinese)[朱小龙 2006 博士学位论文 (兰州:中国科学院近代物理研究所)]
计量
- 文章访问数: 6100
- PDF下载量: 217
- 被引次数: 0