搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于联合波叠加法的浅海信道下圆柱壳声辐射研究

商德江 钱治文 何元安 肖妍

引用本文:
Citation:

基于联合波叠加法的浅海信道下圆柱壳声辐射研究

商德江, 钱治文, 何元安, 肖妍

Sound radiation of cylinder in shallow water investigated by combined wave superposition method

Shang De-Jiang, Qian Zhi-Wen, He Yuan-An, Xiao Yan
PDF
导出引用
  • 针对浅海信道下弹性结构声辐射预报尚无高效可靠的研究方法,提出了一种浅海信道下弹性结构声辐射快速预报的联合波叠加法.该方法结合了浅海信道传输函数、多物理场耦合数值计算法和波叠加法理论,运用该方法可对浅海信道下弹性结构辐射声场进行快速预报.经数值法和解析解法验证后,从信道下辐射源、环境影响和辐射声场测量的角度研究分析了浅海信道下弹性圆柱壳的声辐射特性,阐释了进行浅海信道下结构声辐射研究的必要性.研究结果表明,仅在低频浅海信道下弹性结构可近似等效为点源,信道上下边界对声场产生显著的耦合影响,高频段的空间声场指向性分布尤为明显,垂直线列阵进行信道下结构辐射声功率测量时,测量结果受到信道环境边界和潜深的影响较大.
    It can be a difficult problem to precisely predict the sound field radiated from a finite elastic structure in shallow water channel because of its strong coupling with up-down boundaries and the fluid medium, whose sound field cannot be calculated directly by current methods, such as Ray theory, normal mode theory and other different methods, which are adaptable to sound fields from idealized point sources in waveguide. So far, there is no reliable prediction method to solve this kind of problem. A combined wave superposition method is proposed for such a problem, which combines the traditional wave superposition method with the transfer function in shallow water channel and the multi-physics field coupling numerical model. This method mainly consists of three sections:1) obtaining the normal velocity on the elastic structure surface in shallow water channel by the finite element method (FEM), whose FEM model includes the up-down boundaries and the completely absorbent sound boundaries in the horizontal direction; 2) getting the equivalent point source strength by traditional wave superposition method; 3) calculating the total sound field by adding up each point source field which is obtained by normal mode method. This method is verified by numerical simulation and theoretical analysis by using an imaginary and elastic spherical sound source respectively, and the results demonstrate that the method is valid and has high precision and calculating efficiency. The acoustic radiation characteristics from elastic cylindrical shells is investigated for different acoustic radiation sources, ocean environments and measurements. The cylindrical shell material is steel, whose radius and length are 3 m and 30 m respectively. The shallow water channel is an ideal waveguide with 50 m in depth, at the upper boundary, i.e., the free surface, the lower boundary is the Neumann boundary, i.e., the normal derivative of the acoustic pressure should be zero. The analysis frequency range is from 30 Hz to 200 Hz. The results show that due to a significant coupling effect of up-down direction boundaries on the sound field, the elastic structure can be equivalent to the point source only in low frequency and far field. The spatial field directivity distribution is more obvious at high frequency. The acoustic power measured by vertical line arrayis greatly influenced by ocean boundary and the depth of target.
      Corresponding author: Qian Zhi-Wen, 15846595689@163.com;xiaoyanb09@hrbeu.edu.cn ; Xiao Yan, 15846595689@163.com;xiaoyanb09@hrbeu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11404079).
    [1]

    Zhang Y G 2014 The Effect and Application of Acoustic Photoelectric Waveguide (Beijing:Publishing House of Electronics Industry) pp117-125 (in Chinese)[张永刚 2014 海洋声光电波导效应及应用(北京:电子工业出版社) 第117125 页]

    [2]

    Koopmann G H, Song L, Fahnline J B 1989 J. Acoust Soc. Am. 86 2433

    [3]

    Miller R D, Moyer Jr E T M, Huang H, berall H 1991 J. Acoust Soc. Am. 89 2185

    [4]

    Fahnline J B, Koopmann G H 1991 J. Acoust Soc. Am. 90 2808

    [5]

    Jeans R, Mathews I C 1992 J. Acoust Soc. Am. 92 1156

    [6]

    Yu F, Chen X Z, Li W B, Chen J 2004 Acta Phys. Sin. 53 2607 (in Chinese)[于飞, 陈心昭, 李卫兵, 陈剑 2004 53 2607]

    [7]

    Li W B, Chen J, Bi C X, Chen X Z 2006 Acta Phys. Sin. 55 1264 (in Chinese)[李卫兵, 陈剑, 毕传兴, 陈心昭 2006 55 1264]

    [8]

    Xiong J S, Wu C J, Xu Z Y, Zeng G W 2011 Chin. J. Ship Res. 6 41 (in Chinese)[熊济时, 吴崇健, 徐志云, 曾革委 2011 中国舰船研究 6 41]

    [9]

    Li J Q, Chen J, Yang C, Jia W Q 2008 Acta Phys. Sin. 57 4258 (in Chinese)[李加庆, 陈进, 杨超, 贾文强 2008 57 4258]

    [10]

    Chen H Y, Shang D J, Li Q, Liu Y W 2013 Acta Acoust 38 137 (in Chinese)[陈鸿洋, 商德江, 李琪, 刘永伟 2013 声学学报 38 137]

    [11]

    Zhan G Q, Mao R F 2016 J. Nav. Univ. Eng. 28 4 (in Chinese)[詹国强, 毛荣富 2016 海军工程大学学报 28 4]

    [12]

    Gao Y, Cheng H, Chen J 2008 Trans. Chin. Soc. Agric. Mach. 39 173 (in Chinese)[高煜, 程昊, 陈剑 2008 农业机械学报 39 173]

    [13]

    Wang Y M 2013 Ph. D. Dissertation (Harbin:Harbin Engineering University) (in Chinese)[王玉明 2013 博士学位论文(哈尔滨:哈尔滨工程大学)]

    [14]

    Pan H J, Li J Q, Chen J, Zhang G C, Liu X F 2006 China Mech. Eng. 17 733 (in Chinese)[潘汉军, 李加庆, 陈进, 张桂才, 刘先锋 2006 中国机械工程 17 733]

    [15]

    Bai Z G, Wu W W, Zuo C K, Zhang F, Xiong C X 2014 J. Shi. Mech. 1-2 178 (in Chinese)[白振国, 吴文伟, 左成魁, 张峰, 熊晨熙 2014 船舶力学 12 178]

    [16]

    Zou Y J, Zhao D Y 2004 J. Vib. Eng. 17 269 (in Chinese)[邹元杰, 赵德有 2004 振动工程学报 17 269]

    [17]

    Wang P, Li T Y, Zhu X 2017 J. Ocean Eng. 142 280

    [18]

    Zhang R H, He Y, Liu H, Akulichev V A 1995 J. Sound Vib. 184 439

    [19]

    Qin J X, Boris K, Peng Z H, Li Z L, Zhang R H, Luo W Y 2016 Acta Phys. Sin. 65 034301 (in Chinese)[秦继兴, Boris K, 彭朝晖, 李整林, 张仁和, 骆文于 2016 65 034301]

    [20]

    Luo W Y, Yu X L, Yang X F, Zhang Z Z, Zhang R H 2016 Chin. Phys. B 25 124309

    [21]

    Porter M B, Bucker H P 1987 J. Acoust Soc. Am. 82 1349

    [22]

    Etter P C (translated by Cai Z M) 2005 Underwater Acoustics Modeling and Simulation (3rd Ed.) (Beijing:Publishing House of Electronics Industry) pp83-88 (in Chinese)[埃特 著 (蔡志明 译) 2005 水声建模与仿真(第3版) (北京:电子工业出版社) 第8388页]

    [23]

    Brekhovskikh L M, Lysanov Y P 2004 Fundamentals of Ocean Acoustics (3th Ed.) (New York:Acoustics Springer) pp72-114

    [24]

    Marburg S, Nolte B 2008 Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods (New York:Acoustics Springer) pp166-178

    [25]

    Jackson D R, Richardson M D (translated by Liu B H, Kan G M, Li G B) 2014 High-Frequency Seafloor Acoustics (Beijing:Ocean Press) pp240-260 (in Chinese)[杰克森, 理查德森 著(刘保华, 阚光明, 李官保 译) 2014 高频海底声学(北京:海洋出版社) 第240260 页]

    [26]

    Weston D E 1963 Radio Ele. Eng. 26 329

  • [1]

    Zhang Y G 2014 The Effect and Application of Acoustic Photoelectric Waveguide (Beijing:Publishing House of Electronics Industry) pp117-125 (in Chinese)[张永刚 2014 海洋声光电波导效应及应用(北京:电子工业出版社) 第117125 页]

    [2]

    Koopmann G H, Song L, Fahnline J B 1989 J. Acoust Soc. Am. 86 2433

    [3]

    Miller R D, Moyer Jr E T M, Huang H, berall H 1991 J. Acoust Soc. Am. 89 2185

    [4]

    Fahnline J B, Koopmann G H 1991 J. Acoust Soc. Am. 90 2808

    [5]

    Jeans R, Mathews I C 1992 J. Acoust Soc. Am. 92 1156

    [6]

    Yu F, Chen X Z, Li W B, Chen J 2004 Acta Phys. Sin. 53 2607 (in Chinese)[于飞, 陈心昭, 李卫兵, 陈剑 2004 53 2607]

    [7]

    Li W B, Chen J, Bi C X, Chen X Z 2006 Acta Phys. Sin. 55 1264 (in Chinese)[李卫兵, 陈剑, 毕传兴, 陈心昭 2006 55 1264]

    [8]

    Xiong J S, Wu C J, Xu Z Y, Zeng G W 2011 Chin. J. Ship Res. 6 41 (in Chinese)[熊济时, 吴崇健, 徐志云, 曾革委 2011 中国舰船研究 6 41]

    [9]

    Li J Q, Chen J, Yang C, Jia W Q 2008 Acta Phys. Sin. 57 4258 (in Chinese)[李加庆, 陈进, 杨超, 贾文强 2008 57 4258]

    [10]

    Chen H Y, Shang D J, Li Q, Liu Y W 2013 Acta Acoust 38 137 (in Chinese)[陈鸿洋, 商德江, 李琪, 刘永伟 2013 声学学报 38 137]

    [11]

    Zhan G Q, Mao R F 2016 J. Nav. Univ. Eng. 28 4 (in Chinese)[詹国强, 毛荣富 2016 海军工程大学学报 28 4]

    [12]

    Gao Y, Cheng H, Chen J 2008 Trans. Chin. Soc. Agric. Mach. 39 173 (in Chinese)[高煜, 程昊, 陈剑 2008 农业机械学报 39 173]

    [13]

    Wang Y M 2013 Ph. D. Dissertation (Harbin:Harbin Engineering University) (in Chinese)[王玉明 2013 博士学位论文(哈尔滨:哈尔滨工程大学)]

    [14]

    Pan H J, Li J Q, Chen J, Zhang G C, Liu X F 2006 China Mech. Eng. 17 733 (in Chinese)[潘汉军, 李加庆, 陈进, 张桂才, 刘先锋 2006 中国机械工程 17 733]

    [15]

    Bai Z G, Wu W W, Zuo C K, Zhang F, Xiong C X 2014 J. Shi. Mech. 1-2 178 (in Chinese)[白振国, 吴文伟, 左成魁, 张峰, 熊晨熙 2014 船舶力学 12 178]

    [16]

    Zou Y J, Zhao D Y 2004 J. Vib. Eng. 17 269 (in Chinese)[邹元杰, 赵德有 2004 振动工程学报 17 269]

    [17]

    Wang P, Li T Y, Zhu X 2017 J. Ocean Eng. 142 280

    [18]

    Zhang R H, He Y, Liu H, Akulichev V A 1995 J. Sound Vib. 184 439

    [19]

    Qin J X, Boris K, Peng Z H, Li Z L, Zhang R H, Luo W Y 2016 Acta Phys. Sin. 65 034301 (in Chinese)[秦继兴, Boris K, 彭朝晖, 李整林, 张仁和, 骆文于 2016 65 034301]

    [20]

    Luo W Y, Yu X L, Yang X F, Zhang Z Z, Zhang R H 2016 Chin. Phys. B 25 124309

    [21]

    Porter M B, Bucker H P 1987 J. Acoust Soc. Am. 82 1349

    [22]

    Etter P C (translated by Cai Z M) 2005 Underwater Acoustics Modeling and Simulation (3rd Ed.) (Beijing:Publishing House of Electronics Industry) pp83-88 (in Chinese)[埃特 著 (蔡志明 译) 2005 水声建模与仿真(第3版) (北京:电子工业出版社) 第8388页]

    [23]

    Brekhovskikh L M, Lysanov Y P 2004 Fundamentals of Ocean Acoustics (3th Ed.) (New York:Acoustics Springer) pp72-114

    [24]

    Marburg S, Nolte B 2008 Computational Acoustics of Noise Propagation in Fluids-Finite and Boundary Element Methods (New York:Acoustics Springer) pp166-178

    [25]

    Jackson D R, Richardson M D (translated by Liu B H, Kan G M, Li G B) 2014 High-Frequency Seafloor Acoustics (Beijing:Ocean Press) pp240-260 (in Chinese)[杰克森, 理查德森 著(刘保华, 阚光明, 李官保 译) 2014 高频海底声学(北京:海洋出版社) 第240260 页]

    [26]

    Weston D E 1963 Radio Ele. Eng. 26 329

  • [1] 汪磊, 黄益旺, 郭霖, 任超. 浅海粗糙海底声散射建模及声场特性.  , 2024, 73(3): 034301. doi: 10.7498/aps.73.20231472
    [2] 刘昀鹏, 李义丰, 蓝君. 基于圆柱形非均匀迷宫结构的动态可调定向声辐射.  , 2023, 72(6): 064301. doi: 10.7498/aps.72.20222186
    [3] 郝望, 段睿, 杨坤德. 联合简正波水波和底波频散特性的贝叶斯地声参数反演.  , 2023, 72(5): 054303. doi: 10.7498/aps.72.20221717
    [4] 潘瑞琪, 李凡, 杜芷玮, 胡静, 莫润阳, 王成会. 平面波声场中内置偏心液滴的弹性球壳声辐射力.  , 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [5] 臧雨宸, 林伟军, 苏畅, 吴鹏飞. Gauss声束对离轴椭圆柱的声辐射力矩.  , 2021, 70(8): 084301. doi: 10.7498/aps.70.20201635
    [6] 张士钊, 朴胜春. 倾斜弹性海底条件下浅海声场的简正波相干耦合特性分析.  , 2021, 70(21): 214304. doi: 10.7498/aps.70.20211013
    [7] 时胜国, 高塬, 张昊阳, 杨博全. 基于单元辐射叠加法的结构声源声场重建方法.  , 2021, 70(13): 134301. doi: 10.7498/aps.70.20201971
    [8] 钱治文, 商德江, 孙启航, 何元安, 翟京生. 三维浅海下弹性结构声辐射预报的有限元-抛物方程法.  , 2019, 68(2): 024301. doi: 10.7498/aps.68.20181452
    [9] 郭文杰, 李天匀, 朱翔, 屈凯旸. 部分浸没圆柱壳声固耦合计算的半解析法研究.  , 2018, 67(8): 084302. doi: 10.7498/aps.67.20172681
    [10] 杨德森, 张睿, 时胜国. 内部体积源作用下的圆柱壳内外声场特性.  , 2018, 67(24): 244301. doi: 10.7498/aps.67.20181716
    [11] 潘安, 范军, 王斌, 陈志刚, 郑国垠. 双层周期加肋有限长圆柱壳声散射精细特征研究.  , 2014, 63(21): 214301. doi: 10.7498/aps.63.214301
    [12] 段晓敏, 赵新玉, 孙华飞. 矩形表面波探头声场的高斯声束叠加法.  , 2014, 63(1): 014301. doi: 10.7498/aps.63.014301
    [13] 潘安, 范军, 卓琳凯. 准周期加隔板有限长圆柱壳声散射.  , 2013, 62(2): 024301. doi: 10.7498/aps.62.024301
    [14] 潘安, 范军, 卓琳凯. 周期性加隔板有限长圆柱壳声散射.  , 2012, 61(21): 214301. doi: 10.7498/aps.61.214301
    [15] 刘启能. 一维固-固结构圆柱声子晶体中弹性波的传输特性.  , 2011, 60(3): 034301. doi: 10.7498/aps.60.034301
    [16] 那仁满都拉, 韩元春. 非均匀圆柱壳中非线性波传播模型的同伦分析解法.  , 2010, 59(5): 2942-2947. doi: 10.7498/aps.59.2942
    [17] 张小正, 毕传兴, 徐亮, 陈心昭. 基于波叠加法的近场声全息空间分辨率增强方法.  , 2010, 59(8): 5564-5571. doi: 10.7498/aps.59.5564
    [18] 张海滨, 蒋伟康, 万 泉. 适用于循环平稳声场的基于波叠加法的近场声全息技术.  , 2008, 57(1): 313-321. doi: 10.7498/aps.57.313
    [19] 徐 亮, 毕传兴, 陈 剑, 陈心昭. 基于波叠加法的patch近场声全息及其实验研究.  , 2007, 56(5): 2776-2783. doi: 10.7498/aps.56.2776
    [20] 李卫兵, 陈 剑, 毕传兴, 陈心昭. 联合波叠加法的全息理论与实验研究.  , 2006, 55(3): 1264-1270. doi: 10.7498/aps.55.1264
计量
  • 文章访问数:  6846
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-09-04
  • 修回日期:  2018-01-29
  • 刊出日期:  2019-04-20

/

返回文章
返回
Baidu
map