搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

任意阶标度分形格分抗与非正则格型标度方程

余波 何秋燕 袁晓

引用本文:
Citation:

任意阶标度分形格分抗与非正则格型标度方程

余波, 何秋燕, 袁晓

Scaling fractal-lattice franctance approximation circuits of arbitrary order and irregular lattice type scaling equation

Yu Bo, He Qiu-Yan, Yuan Xiao
PDF
导出引用
  • Carlson分形格电路是分抗的理想逼近情形,但仅具有负半阶运算性能,逼近效益随着电路节次数的增加逐渐降低.虽然可嵌套得到-1/2n阶(n为大于或等于2的整数)分抗逼近电路,但结构复杂,无法实现任意分数阶运算.通过类比拓展Carlson分形格电路,获得具有高逼近效益的任意实数阶微积算子的分抗逼近电路标度分形格分抗,并用非正则格型标度方程进行数学描述.分别探讨非正则格型标度方程的近似求解和真实解.通过调节电阻递进比与电容递进比的取值,可构造出具有任意运算阶的标度分形格分抗逼近电路.标度拓展极大地提高了标度分形格分抗电路的逼近效益.随着标度因子的增加,负半阶标度分形格分抗的逼近效益逐渐增大并明显高于Carlson分形格分抗.设计了基于五节Carlson分形格分抗与负半阶标度分形格分抗的半阶微分运算电路,并对周期三角波和周期方波信号进行半阶微分运算,实验测试结果与理论分析一致.
    Although Carlson fractal-lattice fractance approximation circuit belongs to the ideal approximation, it can only have operational performance of fractional operator of negative half-order. When series of this circuit increases, the approximation benefit decreases. Even though the fractance approximation circuit of -1/2n (n is an integer greater than or equal to 2) order can be obtained by using nested structures, the structure of this kind of circuit is complicated and fractional operation of arbitrary order cannot be achieved by this circuit. The Liu-Kaplan fractal-chain fractance class, which can be regarded as scaling extension circuits of the Oldham fractal-chain fractance class, has high approximation benefit and can realize operational performance of arbitrary fractional order. Based on analogy, arbitrary order scaling fractal-lattice franctance approximation circuits of high approximation benefit and corresponding lattice type scaling equation can be achieved through respectively making scaling extension to the Carlson fractal-lattice franctance approximation circuit and its normalized iterating equation. There exists the possibility to verify the validity of this scaling extension and scaling fractal-lattice fractance approximation circuits with operational performance of arbitrary order in different ways, including the transmission parameter matrix algorithm, the iterating matrix algorithm and the coefficient vector iterating algorithm. Arbitrary order scaling fractal-lattice franctance approximation circuits can be realized by adjusting both the resistance progressive-ratio and the capacitance progressive-ratio parameters. The approximation benefit of scaling fractal-lattice franctance approximation circuit of arbitrary order is determined by both the scaling factor and the circuit series. The introduced extension benefit function is to be used in performance analyses. Besides, performance comparisons have been made between the Carlson fractal-lattice franctance approximation circuit of five series and the scaling fractal-lattice franctance approximation circuit of negative half-order. With the increasing of the value of the scaling factor, approximation efficiency of the scaling fractal-lattice franctance approximation circuits gradually increases, which are higher than those of the Carlson fractal-lattice franctance approximation circuits. The Carlson fractal-lattice franctance approximation circuit and the scaling fractal-lattice franctance approximation circuit of five series are designed to be used in the active differential operational circuit of half-order to construct experimental testing systems. The approximation performances of both circuits are investigated from the aspects of order-frequency characteristic and F-frequency characteristic. The approximation performance of the scaling fractal-lattice franctance approximation circuit outperforms that of the Carlson fractal-lattice franctance approximation circuit. As the successful application case, the active differential operational circuit designed by the scaling fractal-lattice franctance approximation circuit is used to do the half-order calculus of triangular and square wave signals. This paper is merely an incipient work on scaling fractal-lattice franctance approximation circuits of arbitrary order and irregular lattice type scaling equations.
      通信作者: 袁晓, 653381180@qq.com
      Corresponding author: Yuan Xiao, 653381180@qq.com
    [1]

    Yuan X 2015 Mathematical Principles of Fractance Approximation Circuits (Beijing: Science Press) pp3-15 (in Chinese) [袁晓 2015 分抗逼近电路之数学原理(北京:科学出版社) 第315页]

    [2]

    He Q Y, Yuan X 2016 Acta Phys. Sin 65 160202 (in Chinese) [何秋燕, 袁晓 2016 65 160202]

    [3]

    He Q Y, Yu B, Yuan X 2017 Chin. Phys. B 26 040202

    [4]

    Shang D S, Chai Y S, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B 24 109

    [5]

    Shen J X, Cong J Z, Chai Y S, Shang D S, Shen S P, Zhai K, Tian Y, Sun Y 2016 Phys. Rev. Appl. 6 021001

    [6]

    Carlson G E 1960 M. S. Dissertation (Kansas State: Kansas State University)

    [7]

    Pu Y F, Yuan X 2016 IEEE Access 4 1

    [8]

    Yuan X, Feng G Y 2015 Proceedings of the 26th Academic Annual Conference of Circuits and Systems Branch, Chinese Institute of Electronics Chang Sha, China, October 23-26, 2015 p295 [袁晓, 冯国英 2015 中国电子学会电路与系统分会第二十六届学术年会论文集 中国长沙, 2015 年10月23日26日 第295页]

    [9]

    Yuan Z, Yuan X 2017 Acta Electron. Sin. 45 2511 (in Chinese) [袁子, 袁晓 2017 电子学报 45 2511]

    [10]

    Han Q, Liu C X, Sun L, Zhu D R 2013 Chin. Phys. B 22 020502

    [11]

    Wang F Q, Ma X K 2013 Chin. Phys. B 22 030506

    [12]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese) [申永军, 杨绍普, 邢海军 2012 61 110505]

    [13]

    Yang J H, Zhu H 2013 Acta Phys. Sin. 62 024501 (in Chinese) [杨建华, 朱华 2013 62 024501]

    [14]

    Zhou H W, Wang C P, Duan Z Q, Zhang M, Liu J F 2012 Sci. Sin.: Phys. Mech. Astron. 42 310 (in Chinese) [周宏伟, 王春萍, 段志强, 张淼, 刘建锋 2012 中国科学: 物理学 力学 天文学 42 310]

    [15]

    Wu F, Liu J F, Bian Y, Zhou Z W 2014 J. Sichuan Univ. (Engineering Science Edition) 46 22 (in Chinese) [吴斐, 刘建锋, 边宇, 周志威 2014 四川大学学报 (工程科学版) 46 22]

    [16]

    Yu Y J, Wang Z H 2015 Acta Phys. Sin. 64 238401 (in Chinese) [俞亚娟, 王在华 2015 64 238401]

    [17]

    Li H H, Chen D Y, Zhang H, Wang F F, Ba D D 2016 Mech. Syst. Signal Process. 80 414

    [18]

    Li H H, Chen D Y, Zhang H, Wu C Z, Wang X Y 2017 Appl. Energ. 185 244

    [19]

    Xu B B, Wang F F, Chen D Y, Zhang H 2016 Energ. Convers. Manag. 108 478

    [20]

    Tao L, Yuan X, Yi Z, Liu P P 2015 Sci. Tech. Eng. 15 81 (in Chinese) [陶磊, 袁晓, 易舟, 刘盼盼 2015 科学技术与工程 15 81]

    [21]

    Liu P P , Yuan X, Tao L, Yi Z 2016 J. Sichuan Univ. (Nat. Sci. Ed.) 53 353 (in Chinese) [刘盼盼, 袁晓, 陶磊, 易舟 2016 四川大学学报 (自然科学版) 53 353]

    [22]

    Yu B, Yuan X, Tao L 2015 J. Electr. Inf. Technol. 37 21 (in Chinese) [余波, 袁晓, 陶磊 2015 电子与信息学报 37 21]

    [23]

    Yuan X, Chen X D, Li Q L, Zhang S P, Jiang Y D, Yu J B 2002 Acta Electron. Sin. 30 769 (in Chinese) [袁晓, 陈向东, 李齐良, 张蜀平, 蒋亚东, 虞厥邦 2002 电子学报 30 769]

    [24]

    Yuan X, Zhang H Y, Yu J B 2004 Acta Electron. Sin. 32 1658 (in Chinese) [袁晓, 张红雨, 虞厥邦 2004 电子学报 32 1658]

    [25]

    Zhao Y Y, Yuan X, Teng X D, Wei Y H 2004 J. Sichuan Univ. (Eng. Sci. Ed.) 36 94 (in Chinese) [赵元英, 袁晓, 滕旭东, 魏永豪 2004 四川大学学报(工程科学版) 36 94]

  • [1]

    Yuan X 2015 Mathematical Principles of Fractance Approximation Circuits (Beijing: Science Press) pp3-15 (in Chinese) [袁晓 2015 分抗逼近电路之数学原理(北京:科学出版社) 第315页]

    [2]

    He Q Y, Yuan X 2016 Acta Phys. Sin 65 160202 (in Chinese) [何秋燕, 袁晓 2016 65 160202]

    [3]

    He Q Y, Yu B, Yuan X 2017 Chin. Phys. B 26 040202

    [4]

    Shang D S, Chai Y S, Cao Z X, Lu J, Sun Y 2015 Chin. Phys. B 24 109

    [5]

    Shen J X, Cong J Z, Chai Y S, Shang D S, Shen S P, Zhai K, Tian Y, Sun Y 2016 Phys. Rev. Appl. 6 021001

    [6]

    Carlson G E 1960 M. S. Dissertation (Kansas State: Kansas State University)

    [7]

    Pu Y F, Yuan X 2016 IEEE Access 4 1

    [8]

    Yuan X, Feng G Y 2015 Proceedings of the 26th Academic Annual Conference of Circuits and Systems Branch, Chinese Institute of Electronics Chang Sha, China, October 23-26, 2015 p295 [袁晓, 冯国英 2015 中国电子学会电路与系统分会第二十六届学术年会论文集 中国长沙, 2015 年10月23日26日 第295页]

    [9]

    Yuan Z, Yuan X 2017 Acta Electron. Sin. 45 2511 (in Chinese) [袁子, 袁晓 2017 电子学报 45 2511]

    [10]

    Han Q, Liu C X, Sun L, Zhu D R 2013 Chin. Phys. B 22 020502

    [11]

    Wang F Q, Ma X K 2013 Chin. Phys. B 22 030506

    [12]

    Shen Y J, Yang S P, Xing H J 2012 Acta Phys. Sin. 61 110505 (in Chinese) [申永军, 杨绍普, 邢海军 2012 61 110505]

    [13]

    Yang J H, Zhu H 2013 Acta Phys. Sin. 62 024501 (in Chinese) [杨建华, 朱华 2013 62 024501]

    [14]

    Zhou H W, Wang C P, Duan Z Q, Zhang M, Liu J F 2012 Sci. Sin.: Phys. Mech. Astron. 42 310 (in Chinese) [周宏伟, 王春萍, 段志强, 张淼, 刘建锋 2012 中国科学: 物理学 力学 天文学 42 310]

    [15]

    Wu F, Liu J F, Bian Y, Zhou Z W 2014 J. Sichuan Univ. (Engineering Science Edition) 46 22 (in Chinese) [吴斐, 刘建锋, 边宇, 周志威 2014 四川大学学报 (工程科学版) 46 22]

    [16]

    Yu Y J, Wang Z H 2015 Acta Phys. Sin. 64 238401 (in Chinese) [俞亚娟, 王在华 2015 64 238401]

    [17]

    Li H H, Chen D Y, Zhang H, Wang F F, Ba D D 2016 Mech. Syst. Signal Process. 80 414

    [18]

    Li H H, Chen D Y, Zhang H, Wu C Z, Wang X Y 2017 Appl. Energ. 185 244

    [19]

    Xu B B, Wang F F, Chen D Y, Zhang H 2016 Energ. Convers. Manag. 108 478

    [20]

    Tao L, Yuan X, Yi Z, Liu P P 2015 Sci. Tech. Eng. 15 81 (in Chinese) [陶磊, 袁晓, 易舟, 刘盼盼 2015 科学技术与工程 15 81]

    [21]

    Liu P P , Yuan X, Tao L, Yi Z 2016 J. Sichuan Univ. (Nat. Sci. Ed.) 53 353 (in Chinese) [刘盼盼, 袁晓, 陶磊, 易舟 2016 四川大学学报 (自然科学版) 53 353]

    [22]

    Yu B, Yuan X, Tao L 2015 J. Electr. Inf. Technol. 37 21 (in Chinese) [余波, 袁晓, 陶磊 2015 电子与信息学报 37 21]

    [23]

    Yuan X, Chen X D, Li Q L, Zhang S P, Jiang Y D, Yu J B 2002 Acta Electron. Sin. 30 769 (in Chinese) [袁晓, 陈向东, 李齐良, 张蜀平, 蒋亚东, 虞厥邦 2002 电子学报 30 769]

    [24]

    Yuan X, Zhang H Y, Yu J B 2004 Acta Electron. Sin. 32 1658 (in Chinese) [袁晓, 张红雨, 虞厥邦 2004 电子学报 32 1658]

    [25]

    Zhao Y Y, Yuan X, Teng X D, Wei Y H 2004 J. Sichuan Univ. (Eng. Sci. Ed.) 36 94 (in Chinese) [赵元英, 袁晓, 滕旭东, 魏永豪 2004 四川大学学报(工程科学版) 36 94]

  • [1] 吴朝俊, 方礼熠, 杨宁宁. 含有偏置电压源的非齐次分数阶忆阻混沌电路动力学分析与实验研究.  , 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] 张月荣, 袁晓. 任意阶高运算恒定性分抗逼近电路—标度格型级联双口网络.  , 2021, 70(4): 048401. doi: 10.7498/aps.70.20201465
    [3] 徐鑫鑫, 张毅. 分数阶非保守Lagrange系统的一类新型绝热不变量.  , 2020, 69(22): 220401. doi: 10.7498/aps.69.20200488
    [4] 何秋燕, 袁晓. Carlson与任意阶分数微积分算子的有理逼近.  , 2016, 65(16): 160202. doi: 10.7498/aps.65.160202
    [5] 娄正坤, 孙涛, 贺威, 杨建华. 基础激励下分数阶线性系统的响应特性分析.  , 2016, 65(8): 084501. doi: 10.7498/aps.65.084501
    [6] 杨毅, 唐刚, 张哲, 寻之朋, 宋丽建, 韩奎. 科赫分形基底上受限固-固模型动力学标度行为的数值研究.  , 2015, 64(13): 130501. doi: 10.7498/aps.64.130501
    [7] 舒盼盼, 王伟, 唐明, 尚明生. 花簇分形无标度网络中节点影响力的区分度.  , 2015, 64(20): 208901. doi: 10.7498/aps.64.208901
    [8] 熊杰, 陈绍宽, 韦伟, 刘爽, 关伟. 基于多重分形去趋势波动分析法的交通流多重分形无标度区间自动识别方法.  , 2014, 63(20): 200504. doi: 10.7498/aps.63.200504
    [9] 贺少波, 孙克辉, 王会海. 分数阶混沌系统的Adomian分解法求解及其复杂性分析.  , 2014, 63(3): 030502. doi: 10.7498/aps.63.030502
    [10] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制.  , 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [11] 马靖杰, 夏辉, 唐刚. 含关联噪声的空间分数阶随机生长方程的动力学标度行为研究.  , 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [12] 陈卫东, 刘要龙, 朱奇光, 陈颖. 基于改进雁群PSO算法的模糊自适应扩展卡尔曼滤波的SLAM算法.  , 2013, 62(17): 170506. doi: 10.7498/aps.62.170506
    [13] 张永伟, 唐刚, 韩奎, 寻之朋, 谢裕颖, 李炎. 分形基底上刻蚀模型动力学标度行为的数值模拟研究.  , 2012, 61(2): 020511. doi: 10.7498/aps.61.020511
    [14] 王发强, 马西奎. 电感电流连续模式下Boost变换器的分数阶建模与仿真分析.  , 2011, 60(7): 070506. doi: 10.7498/aps.60.070506
    [15] 孙克辉, 杨静利, 丁家峰, 盛利元. 单参数Lorenz混沌系统的电路设计与实现.  , 2010, 59(12): 8385-8392. doi: 10.7498/aps.59.8385
    [16] 常福宣, 陈 进, 黄 薇. 反常扩散与分数阶对流-扩散方程.  , 2005, 54(3): 1113-1117. doi: 10.7498/aps.54.1113
    [17] 王理, 黎坚, 杨亚江. 水分子凝胶中有机凝胶因子聚集体的分形结构研究.  , 2004, 53(1): 160-164. doi: 10.7498/aps.53.160
    [18] 李中新, 金亚秋. 双网格前后向迭代与谱积分法计算分形粗糙面的双站散射与透射.  , 2002, 51(7): 1403-1411. doi: 10.7498/aps.51.1403
    [19] 韩飞, 马本堃. 直接标度分析动力生长.  , 1996, 45(5): 826-831. doi: 10.7498/aps.45.826
    [20] 刘建民, 龚昌德. Thom系统标度性的证明.  , 1982, 31(9): 1278-1284. doi: 10.7498/aps.31.1278
计量
  • 文章访问数:  6038
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-20
  • 修回日期:  2018-02-05
  • 刊出日期:  2018-04-05

/

返回文章
返回
Baidu
map