搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电离层中性气体释放的早期试验效应研究

赵海生 徐朝辉 高敬帆 许正文 吴健 冯杰 徐彬 薛昆 李辉 马征征

引用本文:
Citation:

电离层中性气体释放的早期试验效应研究

赵海生, 徐朝辉, 高敬帆, 许正文, 吴健, 冯杰, 徐彬, 薛昆, 李辉, 马征征

Early time effects produced by neutral gas ionospheric chemical release

Zhao Hai-Sheng, Xu Zhao-Hui, Gao Jing-Fan, Xu Zheng-Wen, Wu Jian, Feng Jie, Xu Bin, Xue Kun, Li Hui, Ma Zheng-Zheng
PDF
导出引用
  • 在电离层释放电子吸附类中性气体能够引起电离层电子密度耗空,在释放之后快速形成电离层洞;同时,由于释放气体的快速膨胀,挤压背景等离子体,在电离层洞的外边缘产生壳状电子密度增强结构,电离层洞和电子密度增强结构同时存在是释放早期试验效应的显著特征.本文研究了电离层中性气体释放的早期试验效应,建立了释放早期电子密度的时空演化物理模型,仿真了释放早期电子密度的时空演化过程,同时采用射线追踪方法研究了释放后10 s和120 s不同频率信号在扰动区的传播效应,并反演得到了电离层垂直探测电离图,反演结果与一次火箭喷焰的实际观测结果吻合较好,初步验证了本模型的正确性.
    The artificial release of electron adsorbing material can cause electron density to be depleted in the ionosphere, forming the ionospheric holes rapidly. At the same time, the shell structure of the electron density enhancement around the hole is produced, owing to the extrusion of background plasma caused by rapid expansion of the release. The coexistence of ionospheric hole and enhancement structure is the significant characteristics of the early time effects. In this paper, the early time effects of neutral chemicals released into ionosphere are studied, and a physical model of spatiotemporal evolution about early time electron density is set up. At t=1 s, the maximum electron density in the enhanced region is 2.46106 cm-3, approximately 2.8 times as great as background electron density, then the electron density at the boundary gradually decreases. At t=30 s, the maximum electron density is 1.58106 cm-3, which is about 1.7 times the background electron density. At t=120 s the maximum electron density in the enhanced region is 1.12106 cm-3, which is 1.2 times the background electron density. Within 120 s after release, the size of the ionospheric cavity increases gradually; at t=5 s the distribution range of the released chemical material is of a sphere of about 10 km in diameter; at t=120 s the distribution diameter of the released chemical material is more than 70 km, and at the same time, the depletion depth of the ionospheric hole decreases slowly. At t=1 s, the depletion depth of the ionospheric hole is about 100%, and at t=120 s the depletion depth of the ionospheric cavity decreases to 95%. The effects of different-frequency radio waves propagating through ionospheric disturbance at t=10 s and t=120 s are simulated by the ray tracing. At t=10 s, the effect of electron density enhancement is remarkable, and the thickness of the enhancement is about 10 km, and the electronic density enhancement area can reflect the radio wave signal at a frequency as high as 14 MHz. At t=120 s, the phenomenon of electron density enhancement becomes weak, the thickness of the enhanced area continues to increase, and the radio wave signal that the electronic density enhancement area could reflect decreases to 11 MHz. The radio waves at a frequency range between 9 MHz and 12 MHz each have a complex diffraction, focusing and dispersing effect in the disturbed area. Furthermore, according to the working principle of ionospheric vertical measurement instrument and ray tracing theory, the vertical ionization detection figures are obtained through inversion. The results are consistent with previous experimental results of rocket exhaust, which testifies the correctness of proposed model.
      通信作者: 徐朝辉, zhhxu_22@163.com
    • 基金项目: 国家自然科学基金(批准号:11672068,61601419)资助的课题.
      Corresponding author: Xu Zhao-Hui, zhhxu_22@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11672068, 61601419).
    [1]

    Booker H G 1961 J. Geophys. Res. 66 1073

    [2]

    Mendillo M, Hawkins G S, Klobuchar J A 1975 Science 187 343

    [3]

    Mendillo M, Hawkins G S, Klobuchar J A 1975 J. Geophys. Res. 80 2217

    [4]

    Zinn J, Sutherland C D, Stone S N, Duncan L M, Behnke R 1982 J. Atmos. Terr. Phys. 44 1143

    [5]

    Mendillo M, Jeffrey M, Forbes J M 1978 J. Geophys. Res. 83 151

    [6]

    Mendillo M, Forbes J M 1982 J. Geophys. Res. 87 8273

    [7]

    Mendillo M, Smith S, Coster A, Erickson P, Baumgardner J, Martinis C 2008 SPACE WEATHER 6 S09001

    [8]

    Anderson D N, Bernhardt P A 1978 J. Geophys. Res. 83 4777

    [9]

    Paul A, Bernhardt P A 1979 J. Geophys. Res. 84 4341

    [10]

    Paul A, Bernhardt P A 1979 J. Geophys. Res. 84 793

    [11]

    Bernhardt P A 1982 J. Geophys. Res. 87 7539

    [12]

    Bernhardt P A 1984 J. Geophys. Res. 89 3929

    [13]

    Bernhardt P A, Weber E J, Moore J G, Baumgardner J, Mendillo M J 1986 Geophys. Res. Lett. 91 8937

    [14]

    Zhao H S, Xu Z W, Wu Z S, Feng J, Wu J, Xu B, Xu T, Hu Y L 2016 Acta Phys. Sin. 65 209401(in Chinese) [赵海生, 许正文, 吴振森, 冯杰, 吴健, 徐彬, 徐彤, 胡艳莉 2016 65 209401]

    [15]

    Hunton D E 1993 Geophys. Res. Lett. 20 563

    [16]

    Koons H C, Rocdcr J L 1995 J. Geophys. Res. 100 5801

    [17]

    SchunkR W, Szuszczewicz E P 1988 J. Geophys. Res. 93 12901

    [18]

    Schunk R W, Szuszczewicz E P 1991 J. Geophys. Res. 96 1337

    [19]

    Drake J F, Mulbrandon M, Huba J D 1988 Phys. Fluids 31 3412

    [20]

    Zalesak S T, Drake J F, Huba J D 1988 Radio Sci. 23 591

    [21]

    Zalesak S T, Drake J F, Huba J D 1990 Geophys. Res. Lett. 17 1597

    [22]

    Ma T Z, Shunk R W 1991 J. Geophys. Res. 96 5793

    [23]

    Ma T Z, Shunk R W 1993 J. Geophys. Res. 98 323

    [24]

    Gatsonis N A, Hastings D E 1991 J. Geophys. Res. 96 7623

    [25]

    Shuman N S, Hunton D E, Viggiano A A 2015 J. Chem. Rev. 115 4542

    [26]

    Schunk R W, Szuszczewicz E P 1991 J. Geophys. Res. 96 1337

    [27]

    Doles J H, Zabusky N J, Perkins F W 1976 J. Geophys. Res. 81 5987

    [28]

    Zhao H S, Feng J, Xu Z W, Wu Z S 2016 J. Geophys. Res. 121 10508

    [29]

    Zabushky N J, Doles J H, Perkins F W 1973 J. Geophys. Res. 78 711

    [30]

    Lloyd K H, Haerendel G 1973 J. Geophys. Res. 78 7389

    [31]

    Bernhardt P A 1984 J. Geophys. Res. 89 3929

    [32]

    Bernhardt P A 1987 J. Geophys. Res. 92 4617

    [33]

    Haselgrove J 1955 Proc. Phys. Soc. London 23 355

    [34]

    John M Kelso 1968 Radio Sci. 3 1

    [35]

    Zhang R F 1986 Proceedings of the International Symposium on Space Physics Beijing, China, November 10-14, 1986 pp5-100

  • [1]

    Booker H G 1961 J. Geophys. Res. 66 1073

    [2]

    Mendillo M, Hawkins G S, Klobuchar J A 1975 Science 187 343

    [3]

    Mendillo M, Hawkins G S, Klobuchar J A 1975 J. Geophys. Res. 80 2217

    [4]

    Zinn J, Sutherland C D, Stone S N, Duncan L M, Behnke R 1982 J. Atmos. Terr. Phys. 44 1143

    [5]

    Mendillo M, Jeffrey M, Forbes J M 1978 J. Geophys. Res. 83 151

    [6]

    Mendillo M, Forbes J M 1982 J. Geophys. Res. 87 8273

    [7]

    Mendillo M, Smith S, Coster A, Erickson P, Baumgardner J, Martinis C 2008 SPACE WEATHER 6 S09001

    [8]

    Anderson D N, Bernhardt P A 1978 J. Geophys. Res. 83 4777

    [9]

    Paul A, Bernhardt P A 1979 J. Geophys. Res. 84 4341

    [10]

    Paul A, Bernhardt P A 1979 J. Geophys. Res. 84 793

    [11]

    Bernhardt P A 1982 J. Geophys. Res. 87 7539

    [12]

    Bernhardt P A 1984 J. Geophys. Res. 89 3929

    [13]

    Bernhardt P A, Weber E J, Moore J G, Baumgardner J, Mendillo M J 1986 Geophys. Res. Lett. 91 8937

    [14]

    Zhao H S, Xu Z W, Wu Z S, Feng J, Wu J, Xu B, Xu T, Hu Y L 2016 Acta Phys. Sin. 65 209401(in Chinese) [赵海生, 许正文, 吴振森, 冯杰, 吴健, 徐彬, 徐彤, 胡艳莉 2016 65 209401]

    [15]

    Hunton D E 1993 Geophys. Res. Lett. 20 563

    [16]

    Koons H C, Rocdcr J L 1995 J. Geophys. Res. 100 5801

    [17]

    SchunkR W, Szuszczewicz E P 1988 J. Geophys. Res. 93 12901

    [18]

    Schunk R W, Szuszczewicz E P 1991 J. Geophys. Res. 96 1337

    [19]

    Drake J F, Mulbrandon M, Huba J D 1988 Phys. Fluids 31 3412

    [20]

    Zalesak S T, Drake J F, Huba J D 1988 Radio Sci. 23 591

    [21]

    Zalesak S T, Drake J F, Huba J D 1990 Geophys. Res. Lett. 17 1597

    [22]

    Ma T Z, Shunk R W 1991 J. Geophys. Res. 96 5793

    [23]

    Ma T Z, Shunk R W 1993 J. Geophys. Res. 98 323

    [24]

    Gatsonis N A, Hastings D E 1991 J. Geophys. Res. 96 7623

    [25]

    Shuman N S, Hunton D E, Viggiano A A 2015 J. Chem. Rev. 115 4542

    [26]

    Schunk R W, Szuszczewicz E P 1991 J. Geophys. Res. 96 1337

    [27]

    Doles J H, Zabusky N J, Perkins F W 1976 J. Geophys. Res. 81 5987

    [28]

    Zhao H S, Feng J, Xu Z W, Wu Z S 2016 J. Geophys. Res. 121 10508

    [29]

    Zabushky N J, Doles J H, Perkins F W 1973 J. Geophys. Res. 78 711

    [30]

    Lloyd K H, Haerendel G 1973 J. Geophys. Res. 78 7389

    [31]

    Bernhardt P A 1984 J. Geophys. Res. 89 3929

    [32]

    Bernhardt P A 1987 J. Geophys. Res. 92 4617

    [33]

    Haselgrove J 1955 Proc. Phys. Soc. London 23 355

    [34]

    John M Kelso 1968 Radio Sci. 3 1

    [35]

    Zhang R F 1986 Proceedings of the International Symposium on Space Physics Beijing, China, November 10-14, 1986 pp5-100

  • [1] 朱肖丽, 胡耀垓, 赵正予, 张援农. 钡和铯释放的电离层扰动效应对比.  , 2020, 69(2): 029401. doi: 10.7498/aps.69.20191266
    [2] 罗欢, 肖卉. 电离层回波谱展宽机理分析及频谱锐化方法.  , 2019, 68(21): 219401. doi: 10.7498/aps.68.20190887
    [3] 赵海生, 许正文, 徐朝辉, 薛昆, 郑延帅, 谢守志, 冯杰, 吴健. 基于化学物质释放的电离层闪烁抑制方法研究.  , 2019, 68(10): 109401. doi: 10.7498/aps.68.20182281
    [4] 赵海生, 许正文, 吴振森, 冯杰, 吴健, 徐彬, 徐彤, 胡艳莉. 电离层中释放六氟化硫效应的三维精细模拟研究.  , 2016, 65(20): 209401. doi: 10.7498/aps.65.209401
    [5] 吴静, 周志为, 闫旭. 电力线谐波辐射在分层各向异性电离层中的传播特点.  , 2015, 64(19): 194101. doi: 10.7498/aps.64.194101
    [6] 常珊珊, 倪彬彬, 赵正予, 汪枫, 李金星, 赵晶晶, 顾旭东, 周晨. 基于试验粒子模拟的电离层人工调制激发的极低频和甚低频波对磁层高能电子的散射效应.  , 2014, 63(6): 069401. doi: 10.7498/aps.63.069401
    [7] 郝书吉, 李清亮, 杨巨涛, 吴振森. 电离层调制加热产生极低频/甚低频波定向辐射的理论分析.  , 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
    [8] 胡耀垓, 赵正予, 张援农. 不同释放高度的化学物质的电离层扰动特性.  , 2013, 62(20): 209401. doi: 10.7498/aps.62.209401
    [9] 盛峥. 电离层电子总含量不同时间尺度的预报模型研究.  , 2012, 61(21): 219401. doi: 10.7498/aps.61.219401
    [10] 汪枫, 赵正予, 常珊珊, 倪彬彬, 顾旭东. 低纬电离层人工调制所激发的ELF波射线追踪.  , 2012, 61(19): 199401. doi: 10.7498/aps.61.199401
    [11] 胡耀垓, 赵正予, 张援农. 电离层钡云释放早期动力学行为的数值模拟.  , 2012, 61(8): 089401. doi: 10.7498/aps.61.089401
    [12] 洪振杰, 刘荣建, 郭鹏, 董乃铭. 非球对称电离层掩星数据反演.  , 2011, 60(12): 129401. doi: 10.7498/aps.60.129401
    [13] 胡耀垓, 赵正予, 项薇, 张援农. 人工电离层洞形态调制及其对短波传播的影响.  , 2011, 60(9): 099402. doi: 10.7498/aps.60.099402
    [14] 徐贤胜, 洪振杰, 郭鹏, 刘荣建. COSMIC掩星电离层资料反演以及结果验证.  , 2010, 59(3): 2163-2168. doi: 10.7498/aps.59.2163
    [15] 胡耀垓, 赵正予, 张援农. 几种典型化学物质的电离层释放效应研究.  , 2010, 59(11): 8293-8303. doi: 10.7498/aps.59.8293
    [16] 石润, 赵正予. 磁倾角对电离层Alfven谐振器影响的初步研究.  , 2009, 58(7): 5111-5117. doi: 10.7498/aps.58.5111
    [17] 黄朝松, 李钧, M .C. KELLEY. 大气重力波产生中纬电离层不均匀体的理论.  , 1994, 43(9): 1476-1485. doi: 10.7498/aps.43.1476
    [18] 潘威炎. 关于地球曲率对低频电波电离层反射系数计算的影响.  , 1981, 30(5): 661-670. doi: 10.7498/aps.30.661
    [19] 陈茂康, 朱恩隆, 梁百先. 公历一九三六年六月十九日上海日偏蚀时天空电离层游离程度之测量.  , 1936, 2(2): 169-177. doi: 10.7498/aps.2.169
    [20] 陈茂康, 张煦. 研究中国天空电离层之初草报告.  , 1935, 1(3): 92-100. doi: 10.7498/aps.1.92
计量
  • 文章访问数:  5097
  • PDF下载量:  138
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-14
  • 修回日期:  2017-09-19
  • 刊出日期:  2018-01-05

/

返回文章
返回
Baidu
map