搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

场方法的改进及其在积分Riemann-Cartan空间运动方程中的应用

王勇 梅凤翔 曹会英 郭永新

引用本文:
Citation:

场方法的改进及其在积分Riemann-Cartan空间运动方程中的应用

王勇, 梅凤翔, 曹会英, 郭永新

Improvement of field method and its application to integrating motion equation in Riemann-Cartan space

Wang Yong, Mei Feng-Xiang, Cao Hui-Ying, Guo Yong-Xin
PDF
导出引用
  • 和Hamilton-Jacobi方法类似,Vujanović场方法把求解常微分方程组特解的问题转化为寻找一个一阶拟线性偏微分方程(基本偏微分方程)完全解的问题,但Vujanović场方法依赖于求出基本偏微分方程的完全解,而这通常是困难的,这就极大地限制了场方法的应用.本文将求解常微分方程组特解的Vujanović场方法改进为寻找动力学系统运动方程第一积分的场方法,并将这种方法应用于一阶线性非完整约束系统Riemann-Cartan位形空间运动方程的积分问题中.改进后的场方法指出,只要找到基本偏微分方程的包含m(m n,n为基本偏微分方程中自变量的数目)个任意常数的解,就可以由此找到系统m个第一积分.特殊情况下,如果能够求出基本偏微分方程的完全解(完全解是m=n时的特例),那么就可以由此找到系统全部第一积分,从而完全确定系统的运动.Vujanović场方法等价于这种特殊情况.
    Like the Hamilton-Jacobi method, the Vujanović field method transforms the problem of seeking the particular solution of an ordinary differential equations into the problem of finding the complete solution of a first order quasilinear partial differential equation, which is usually called the basic partial differential equation. Due to no need of the strong restrictive conditions required in the classic Hamilton-Jacobi method, the Vujanović field method may be used in many fields, such as non-conservative systems, nonholonomic systems, Birkhoff systems, controllable mechanical systems, etc. Even so, there is still a fundamental difficulty in the Vujanović field method. That is, for most of dynamical systems, it is hard to find the complete solution of the basic partial differential equation. In this paper, the Vujanović field method is improved into a new field method. The purpose of the improved field method is to find the first integrals of the motion equations, but not the particular solutions of the motion equations. The improved field method points out that for a basic partial differential equation with n independent variables, m (m n) first integrals of a dynamical system can be found as long as a solution with m arbitrary constants of the basic partial differential equation is found. In particular, if the complete solution (the complete solution is a special case of m=n) of the basic partial differential equation is found, all first integrals of the dynamical system can be found. That means that the motion of the dynamical system is completely determined. The Vujanović field method is just equivalent to this particular case. The improved field method expands the applicability of the field method, and is simpler than the Vujanović field method. Two examples are given to illustrate the effectiveness of the method. In addition, the improved field method is used to integrate the motion equations in Riemann-Cartan space. For a first-order linear homogenous scleronomous nonholonomic system subjected to an active force, its motion equation in its Riemann-Cartan configuration space can be obtained by a first order nonlinear nonholonomic mapping. Since the motion equations in Riemann-Cartan configuration space contain quasi-speeds, they are often considered to be difficult to solve directly. In this paper we give a briefing of how to construct the motion equations of a first order linear nonholonomic constraint system in its Riemann-Cartan configuration space, and how to obtain the first integrals of the motion equations in the Riemann-Cartan configuration space by the improved field method. This is an effective method to study some nonholonomic nonconservative motions.
      通信作者: 郭永新, yxguo@lnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11772144,11572145,11272050,11572034,11202090,11472124)和广东省自然科学基金(批准号:2015AO30310178)资助的课题.
      Corresponding author: Guo Yong-Xin, yxguo@lnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11772144, 11572145, 11272050, 11572034, 11202090, 11472124) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2015AO30310178).
    [1]

    Rumyantsev V V, Sumbatov A S 1978 ZAMM 58 477

    [2]

    Vujanović B 1984 Int. J. Non-Linear Mech. 19 383

    [3]

    Vujanović B 1981 Int. J. Engng. Sci. 19 1739

    [4]

    Vujanović B 1987 J. Sound Vib. 114 375

    [5]

    Mei F X 1992 Acta Armam. 13 47 (in Chinese) [梅凤翔 1992 兵工学报 13 47]

    [6]

    Mei F X 1992 Appl. Math. Mech. 13 165 (in Chinese) [梅凤翔 1992 应用数学和力学 13 165]

    [7]

    Mei F X 1989 Acta Mech. Sin. 5 260

    [8]

    Mei F X 2000 Int. J. Non-Linear Mech. 35 229

    [9]

    Mei F X 1990 Acta Mech. Sin. 6 160

    [10]

    Luo S K 1995 Appl. Math. Mech. 16 981 (in Chinese) [罗绍凯 1995 应用数学和力学 16 981]

    [11]

    Zhang Y 1996 J. B. Inst. Technol. 16 36 (in Chinese) [张毅 1996 北京理工大学学报 16 36]

    [12]

    Chen X W, Luo S K 1998 Appl. Math. Mech. 19 447 (in Chinese) [陈向炜, 罗绍凯 1998 应用数学和力学 19 447]

    [13]

    Fu J L, Chen L Q, Luo S K, Chen X W, Wang X M 2001 Acta Phys. Sin. 50 2289 (in Chinese) [傅景礼, 陈立群, 罗绍凯, 陈向炜, 王新民 2001 50 2289]

    [14]

    Luo S K, Guo Y X, Chen X W, Fu J L 2001 Acta Phys. Sin. 50 2049 (in Chinese) [罗绍凯, 郭永新, 陈向炜, 傅景礼 2001 50 2049]

    [15]

    Abd-El-Latif G M 2004 Appl. Math. Comput. 147 267

    [16]

    Kovacic I 2005 Acta Mech. Sin. 21 192

    [17]

    Ge W K 2006 Acta Phys. Sin. 55 10 (in Chinese) [葛伟宽 2006 55 10]

    [18]

    Zhang Y 2011 J. Southeast Univ. 27 188

    [19]

    Li Y M, Mei F X 2010 Acta Phys. Sin. 59 5930 (in Chinese) [李彦敏, 梅凤翔 2010 59 5930]

    [20]

    Wang Y, Guo Y X 2005 Acta Phys. Sin. 54 5517 (in Chinese) [王勇, 郭永新 2005 54 5517]

    [21]

    Guo Y X, Wang Y, Chee G Y, Mei F X 2005 J. Math. Phys. 46 062902

    [22]

    Guo Y X, Liu S X, Liu C, Luo S K, Wang Y 2007 J. Math. Phys. 48 082901

    [23]

    Wang Y, Guo Y X, L Q S, Liu C 2009 Acta Phys. Sin. 58 5142 (in Chinese) [王勇, 郭永新, 吕群松, 刘畅 2009 58 5142]

    [24]

    Guo Y X, Liu C, Wang Y, Chang P 2010 Sci. China: Phys. Mech. Astron. 53 1707

  • [1]

    Rumyantsev V V, Sumbatov A S 1978 ZAMM 58 477

    [2]

    Vujanović B 1984 Int. J. Non-Linear Mech. 19 383

    [3]

    Vujanović B 1981 Int. J. Engng. Sci. 19 1739

    [4]

    Vujanović B 1987 J. Sound Vib. 114 375

    [5]

    Mei F X 1992 Acta Armam. 13 47 (in Chinese) [梅凤翔 1992 兵工学报 13 47]

    [6]

    Mei F X 1992 Appl. Math. Mech. 13 165 (in Chinese) [梅凤翔 1992 应用数学和力学 13 165]

    [7]

    Mei F X 1989 Acta Mech. Sin. 5 260

    [8]

    Mei F X 2000 Int. J. Non-Linear Mech. 35 229

    [9]

    Mei F X 1990 Acta Mech. Sin. 6 160

    [10]

    Luo S K 1995 Appl. Math. Mech. 16 981 (in Chinese) [罗绍凯 1995 应用数学和力学 16 981]

    [11]

    Zhang Y 1996 J. B. Inst. Technol. 16 36 (in Chinese) [张毅 1996 北京理工大学学报 16 36]

    [12]

    Chen X W, Luo S K 1998 Appl. Math. Mech. 19 447 (in Chinese) [陈向炜, 罗绍凯 1998 应用数学和力学 19 447]

    [13]

    Fu J L, Chen L Q, Luo S K, Chen X W, Wang X M 2001 Acta Phys. Sin. 50 2289 (in Chinese) [傅景礼, 陈立群, 罗绍凯, 陈向炜, 王新民 2001 50 2289]

    [14]

    Luo S K, Guo Y X, Chen X W, Fu J L 2001 Acta Phys. Sin. 50 2049 (in Chinese) [罗绍凯, 郭永新, 陈向炜, 傅景礼 2001 50 2049]

    [15]

    Abd-El-Latif G M 2004 Appl. Math. Comput. 147 267

    [16]

    Kovacic I 2005 Acta Mech. Sin. 21 192

    [17]

    Ge W K 2006 Acta Phys. Sin. 55 10 (in Chinese) [葛伟宽 2006 55 10]

    [18]

    Zhang Y 2011 J. Southeast Univ. 27 188

    [19]

    Li Y M, Mei F X 2010 Acta Phys. Sin. 59 5930 (in Chinese) [李彦敏, 梅凤翔 2010 59 5930]

    [20]

    Wang Y, Guo Y X 2005 Acta Phys. Sin. 54 5517 (in Chinese) [王勇, 郭永新 2005 54 5517]

    [21]

    Guo Y X, Wang Y, Chee G Y, Mei F X 2005 J. Math. Phys. 46 062902

    [22]

    Guo Y X, Liu S X, Liu C, Luo S K, Wang Y 2007 J. Math. Phys. 48 082901

    [23]

    Wang Y, Guo Y X, L Q S, Liu C 2009 Acta Phys. Sin. 58 5142 (in Chinese) [王勇, 郭永新, 吕群松, 刘畅 2009 58 5142]

    [24]

    Guo Y X, Liu C, Wang Y, Chang P 2010 Sci. China: Phys. Mech. Astron. 53 1707

  • [1] 崔金超, 廖翠萃, 刘世兴, 梅凤翔. Birkhoff动力学函数成为约束系统第一积分的判别方法.  , 2017, 66(4): 040201. doi: 10.7498/aps.66.040201
    [2] 宋端, 刘畅, 郭永新. 高阶非完整约束系统嵌入变分恒等式的积分变分原理.  , 2013, 62(9): 094501. doi: 10.7498/aps.62.094501
    [3] 丁光涛. 关于线性阻尼振子第一积分的研究.  , 2013, 62(6): 064501. doi: 10.7498/aps.62.064501
    [4] 丁光涛. 关于谐振子第一积分的研究.  , 2013, 62(6): 064502. doi: 10.7498/aps.62.064502
    [5] 丁光涛. 一类Painleve方程的Lagrange函数族.  , 2012, 61(11): 110202. doi: 10.7498/aps.61.110202
    [6] 李彦敏, 梅凤翔. 广义Birkhoff方程的积分方法.  , 2010, 59(9): 5930-5933. doi: 10.7498/aps.59.5930
    [7] 李元成, 夏丽莉, 王小明. 具有非Chetaev型非完整约束的机电系统的统一对称性.  , 2009, 58(10): 6732-6736. doi: 10.7498/aps.58.6732
    [8] 王勇, 郭永新, 吕群松, 刘畅. 非完整映射理论与刚体定点转动的几何描述.  , 2009, 58(8): 5142-5149. doi: 10.7498/aps.58.5142
    [9] 张 毅. 事件空间中Birkhoff系统的参数方程及其第一积分.  , 2008, 57(5): 2649-2653. doi: 10.7498/aps.57.2649
    [10] 贾利群, 张耀宇, 郑世旺. 事件空间中非Chetaev型非完整约束系统的Hojman守恒量.  , 2007, 56(2): 649-654. doi: 10.7498/aps.56.649
    [11] 贾利群, 罗绍凯, 张耀宇. 事件空间中单面非Chetaev型非完整约束系统的Mei守恒量.  , 2007, 56(11): 6188-6193. doi: 10.7498/aps.56.6188
    [12] 张 毅. 单面非Chetaev型非完整约束系统的非Noether守恒量.  , 2006, 55(2): 504-510. doi: 10.7498/aps.55.504
    [13] 葛伟宽. Whittaker方程的场方法.  , 2006, 55(1): 10-12. doi: 10.7498/aps.55.10
    [14] 王 勇, 郭永新. Riemann-Cartan空间中的d'Alembert-Lagrange原理.  , 2005, 54(12): 5517-5520. doi: 10.7498/aps.54.5517
    [15] 张 毅, 梅凤翔. 非保守力与非完整约束对Lagrange系统Noether对称性的影响.  , 2004, 53(3): 661-668. doi: 10.7498/aps.53.661
    [16] 李爱民, 张 莹, 李子平. 非完整约束奇异广义力学系统的Poincaré-Cartan积分.  , 2004, 53(9): 2816-2820. doi: 10.7498/aps.53.2816
    [17] 张 毅. 非保守力和非完整约束对Hamilton系统Lie对称性的影响.  , 2003, 52(6): 1326-1331. doi: 10.7498/aps.52.1326
    [18] 张 毅, 葛伟宽. 用积分因子方法研究非完整约束系统的守恒律.  , 2003, 52(10): 2363-2367. doi: 10.7498/aps.52.2363
    [19] 罗绍凯, 卢一兵, 周强, 王应德, 欧阳实. 转动相对论Birkhoff约束系统积分不变量的构造.  , 2002, 51(9): 1913-1917. doi: 10.7498/aps.51.1913
    [20] 张毅. 广义经典力学系统的第一积分与变分方程特解的联系.  , 2001, 50(11): 2059-2061. doi: 10.7498/aps.50.2059
计量
  • 文章访问数:  5597
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-09
  • 修回日期:  2017-09-27
  • 刊出日期:  2018-02-05

/

返回文章
返回
Baidu
map