搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模场自积增强检测的光纤声光旋转传感器

刘昱 任国斌 靳文星 吴越 杨宇光 简水生

引用本文:
Citation:

基于模场自积增强检测的光纤声光旋转传感器

刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生

Enhanced selfintegration algorithm for fiber torsion sensor based acoustically-induced fiber grating

Liu Yu, Ren Guo-Bin, Jin Wen-Xing, Wu Yue, Yang Yu-Guang, Jian Shui-Sheng
PDF
导出引用
  • 介绍了一种应变不敏感的基于模场自积增强检测的光纤声光旋转传感器.通过调节加载到光纤声致光栅上的微波频率能使双模光纤输出高纯度LP11模式.采用自积增强算法显著提高传感分辨比例,改善探测速度,实现对环境旋转角度变化的动态监测.传感器在0180的测量范围内,角度最大测量误差范围小于11%;在轴向应变为1001500 之间对应变不敏感.
    Mechanical parameter monitoring based on optical mode detection benefits from its low cross sensitivity and inexpensive instrument. The key to improving detection accuracy is to generate high-quality detection light and use efficient algorithms. We present a strain-independent torsion sensor based on acoustically-induced fiber grating (AIFG) in the dual-mode fiber (DMF) and use the enhanced self-integration algorithm to improve the sensing accuracy. By tuning the radio frequency of driving signal, the LP11 mode generated by the AIFG can be exploited to measure the dynamic torsion variations. Without the complex device such as fiber interferometers and photonic crystal fibers (PCFs), the simple structure built by mode converter and charge coupled device (CCD) can track the dynamic variations and has less cross sensitivity of strain along the transmission direction. The AIFG driven by a radio frequency as a mode converter at specific wavelength does not participate in sensing but generates the high-purity LP11 mode that accounts for more than 90% of total power. With the twist from the rotator stage, the DMF keeps rotating and CCD records the spatial distribution of mode profiles. The features of optical mode is enhanced based on matrix analysis and then the relationship between twist angle and mode features is obtained. Based on image processing, the dynamic variation of spatial beam detected by CCD can be easily tracked and quantified. In experiment, the rotation angle can be obtained by calculating the feature value of the optical mode. Our image detection algorithm is specially designed for the optical fiber mode. Compared with traditional image recognition based on feature learning, it is simple and fast because it is needless to use image segmentation and stochastic processing. Through a series of experiments on angle rotation and parallel strain, we verify the correctness of the enhanced self-integration model and analyse the computational uncertainties that influence the stability of experiment. In the 0 to 180 measurement range, the maximum range of measurement error is less than 11%. When the axial strain is between 100 and 1500 , the sensor is strain-independent. Thus, it is verified that the torsion sensor based on AIFG has high sensitivity and can overcome the cross sensitivity of strain along a certain direction. The pertinent results have significant guidance in designing the multi-parameter sensor. The optical mode detection, instead of the traditional spectrum measurement, enables the whole structure to have the potential to be rebuilt by inexpensive devices that work in visible wavelengths.
      通信作者: 刘昱, 13111016@bjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61178008,61275092)和国家杰出青年科学基金(批准号:61525501)资助的课题.
      Corresponding author: Liu Yu, 13111016@bjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61178008, 61275092) and the National Science Fund for Distinguished Young Scholars of China (Grant No. 61525501).
    [1]

    Venanzi I, Cluni F, Gusella V, Materazzi A L 2007 Proceedings of the 12th International Conference on Wind Engineering AWES. Cairns, Australia, July 2007

    [2]

    Materazzi A L, Ubertini F 2011 J. Sound Vibrat. 330 6420

    [3]

    Spanos P D, Chevallier A M, Politis N P, Payne M L 2003 Shock Vib. 35 85

    [4]

    Rajnauth J, Jagai T 2012 Int. J. Appl. Sci. Technol. 2 109

    [5]

    Zhu T, Rao Y J, Mo Q J 2006 Acta Phys. Sin. 55 249(in Chinese) [朱涛, 饶云江, 莫秋菊 2006 55 249]

    [6]

    Huang B, Shu X 2016 Opt. Express 24 17670

    [7]

    Song B, Miao Y, Lin W, Zhang H, Wu J, Liu B 2013 Opt. Express 21 26806

    [8]

    Chen L, Zhang W G, Wang L, Zhang H, Sieg J, Zhou Q, Zhang L Y, Wang B, Yan T Y 2014 Opt. Express 22 31654

    [9]

    Chen W, Lou S, Wang L, Zou H, Lu W, Jian S 2011 IEEE Photon. Technol. Lett. 23 1639

    [10]

    Silva R M, Ferreira M S, Frazao O 2012 Opt. Commun. 285 1167

    [11]

    Lou S Q, Lu W L, Wang X 2013 Acta Phys. Sin. 62 786(in Chinese) [娄淑琴, 鹿文亮, 王鑫 2013 62 786]

    [12]

    Budinski V, Donlagic D 2016 Opt. Express 24 26282

    [13]

    Zhou Q, Zhang W, Chen L, Yan T, Zhang L, Wang L, Wang B 2015 Opt. Express 23 23877

    [14]

    Qu H, Yan G F, Skorobogatiy M 2014 Opt. Lett. 39 4835

    [15]

    Suzuki S, Matsui T, Asao T, Kotani K 2012 J. Biomed. Sci. 5 672

    [16]

    Li Q P, Ding F, Fang P 2006 Electron. Lett. 42 910

    [17]

    Yu D, Mo Q, Hong Z, Fu S, Sima C, Tang M, Liu D 2016 Opt. Lett. 41 4617

    [18]

    Zou Y R, Du D, Wang L 2011 Informatics in Control, Automation and Robotics (Berlin: Spring) p714

    [19]

    Gao X, Liu Y, You D 2014 Opt. Laser Technol. 62 141

    [20]

    Sun Q, Feng H, Zeng Z M 2015 Opt. Precision Eng. 23 334(in Chinese) [孙茜, 封皓, 曾周末 2015 光学精密工程 23 334]

    [21]

    Zhang W, Wei K, Huang L, Mao D, Jiang B, Gao F, Zhao J 2016 Opt. Express 24 19278

    [22]

    Diez A, Delgado-Pinar M, Mora J, Cruz J L, Andrs M V 2003 IEEE Photon. Technol. Lett. 15 84

  • [1]

    Venanzi I, Cluni F, Gusella V, Materazzi A L 2007 Proceedings of the 12th International Conference on Wind Engineering AWES. Cairns, Australia, July 2007

    [2]

    Materazzi A L, Ubertini F 2011 J. Sound Vibrat. 330 6420

    [3]

    Spanos P D, Chevallier A M, Politis N P, Payne M L 2003 Shock Vib. 35 85

    [4]

    Rajnauth J, Jagai T 2012 Int. J. Appl. Sci. Technol. 2 109

    [5]

    Zhu T, Rao Y J, Mo Q J 2006 Acta Phys. Sin. 55 249(in Chinese) [朱涛, 饶云江, 莫秋菊 2006 55 249]

    [6]

    Huang B, Shu X 2016 Opt. Express 24 17670

    [7]

    Song B, Miao Y, Lin W, Zhang H, Wu J, Liu B 2013 Opt. Express 21 26806

    [8]

    Chen L, Zhang W G, Wang L, Zhang H, Sieg J, Zhou Q, Zhang L Y, Wang B, Yan T Y 2014 Opt. Express 22 31654

    [9]

    Chen W, Lou S, Wang L, Zou H, Lu W, Jian S 2011 IEEE Photon. Technol. Lett. 23 1639

    [10]

    Silva R M, Ferreira M S, Frazao O 2012 Opt. Commun. 285 1167

    [11]

    Lou S Q, Lu W L, Wang X 2013 Acta Phys. Sin. 62 786(in Chinese) [娄淑琴, 鹿文亮, 王鑫 2013 62 786]

    [12]

    Budinski V, Donlagic D 2016 Opt. Express 24 26282

    [13]

    Zhou Q, Zhang W, Chen L, Yan T, Zhang L, Wang L, Wang B 2015 Opt. Express 23 23877

    [14]

    Qu H, Yan G F, Skorobogatiy M 2014 Opt. Lett. 39 4835

    [15]

    Suzuki S, Matsui T, Asao T, Kotani K 2012 J. Biomed. Sci. 5 672

    [16]

    Li Q P, Ding F, Fang P 2006 Electron. Lett. 42 910

    [17]

    Yu D, Mo Q, Hong Z, Fu S, Sima C, Tang M, Liu D 2016 Opt. Lett. 41 4617

    [18]

    Zou Y R, Du D, Wang L 2011 Informatics in Control, Automation and Robotics (Berlin: Spring) p714

    [19]

    Gao X, Liu Y, You D 2014 Opt. Laser Technol. 62 141

    [20]

    Sun Q, Feng H, Zeng Z M 2015 Opt. Precision Eng. 23 334(in Chinese) [孙茜, 封皓, 曾周末 2015 光学精密工程 23 334]

    [21]

    Zhang W, Wei K, Huang L, Mao D, Jiang B, Gao F, Zhao J 2016 Opt. Express 24 19278

    [22]

    Diez A, Delgado-Pinar M, Mora J, Cruz J L, Andrs M V 2003 IEEE Photon. Technol. Lett. 15 84

  • [1] 左一武, 田晶, 杨清, 胡晓, 江阳. 一种基于大角度倾斜光纤光栅包层模的低频声传感方案.  , 2023, 72(12): 124304. doi: 10.7498/aps.72.20230067
    [2] 张若羽, 李培丽, 高辉. 基于光学tamm态的声光开关的研究.  , 2020, 69(16): 164204. doi: 10.7498/aps.69.20200396
    [3] 何应, 马欲飞, 佟瑶, 彭振芳, 于欣. 光纤倏逝波型石英增强光声光谱技术.  , 2018, 67(2): 020701. doi: 10.7498/aps.67.20171881
    [4] 李政颖, 周磊, 孙文丰, 李子墨, 王加琪, 郭会勇, 王洪海. 基于色散效应的光纤光栅高速高精度解调方法研究.  , 2017, 66(1): 014206. doi: 10.7498/aps.66.014206
    [5] 董永康, 周登望, 滕雷, 姜桃飞, 陈曦. 布里渊动态光栅原理及其在光纤传感中的应用.  , 2017, 66(7): 075201. doi: 10.7498/aps.66.075201
    [6] 王闵, 刘复飞, 周贤, 戴玉堂, 杨明红. 基于光纤微结构加工和敏感材料物理融合的光纤传感技术.  , 2017, 66(7): 070703. doi: 10.7498/aps.66.070703
    [7] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器.  , 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [8] 赵勇, 蔡露, 李雪刚, 吕日清. 基于酒精与磁流体填充的单模-空芯-单模光纤结构温度磁场双参数传感器.  , 2017, 66(7): 070601. doi: 10.7498/aps.66.070601
    [9] 何祖源, 刘庆文, 陈嘉庚. 面向地壳形变观测的超高分辨率光纤应变传感系统.  , 2017, 66(7): 074208. doi: 10.7498/aps.66.074208
    [10] 刘铁根, 于哲, 江俊峰, 刘琨, 张学智, 丁振扬, 王双, 胡浩丰, 韩群, 张红霞, 李志宏. 分立式与分布式光纤传感关键技术研究进展.  , 2017, 66(7): 070705. doi: 10.7498/aps.66.070705
    [11] 郝辉, 夏巍, 王鸣, 郭冬梅, 倪小琦. 光纤激光器自混合干涉效应研究.  , 2014, 63(23): 234202. doi: 10.7498/aps.63.234202
    [12] 王婷婷, 葛益娴, 常建华, 柯炜, 王鸣. 基于椭球封闭空气腔的光纤复合法布里-珀罗结构折射率传感特性研究.  , 2014, 63(24): 240701. doi: 10.7498/aps.63.240701
    [13] 娄淑琴, 鹿文亮, 王鑫. 同时测量扭转角度和扭转方向的侧漏光子晶体光纤扭转传感器.  , 2013, 62(9): 090701. doi: 10.7498/aps.62.090701
    [14] 杨珅, 荣强周, 孙浩, 张菁, 梁磊, 徐琴芳, 詹苏昌, 杜彦英, 冯定一, 乔学光, 忽满利. 基于Michelson干涉仪的高灵敏度光纤高温探针传感器.  , 2013, 62(8): 084218. doi: 10.7498/aps.62.084218
    [15] 陈伟, 孟洲, 周会娟, 罗洪. 远程干涉型光纤传感系统的非线性相位噪声分析.  , 2012, 61(18): 184210. doi: 10.7498/aps.61.184210
    [16] 朱涛, 宋韵, 饶云江, 朱永. CO2激光写入旋转折变型长周期光纤光栅的制作及理论分析.  , 2009, 58(7): 4738-4745. doi: 10.7498/aps.58.4738
    [17] 朱 涛, 饶云江, 莫秋菊, 王久玲. 高频CO2激光脉冲写入超长周期光纤光栅特性研究.  , 2007, 56(9): 5287-5292. doi: 10.7498/aps.56.5287
    [18] 郭文刚, 杨秀峰, 罗绍均, 李勇男, 涂成厚, 吕福云, 王宏杰, 李恩邦, 吕 超. 基于激光瞬态特性的气体浓度光纤传感器.  , 2007, 56(1): 308-312. doi: 10.7498/aps.56.308
    [19] 朱 涛, 饶云江, 莫秋菊. 基于超长周期光纤光栅的高灵敏度扭曲传感器.  , 2006, 55(1): 249-253. doi: 10.7498/aps.55.249
    [20] 乔学光, 贾振安, 傅海威, 李 明, 周 红. 光纤光栅温度传感理论与实验.  , 2004, 53(2): 494-497. doi: 10.7498/aps.53.494
计量
  • 文章访问数:  5620
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-03
  • 修回日期:  2017-09-29
  • 刊出日期:  2018-01-05

/

返回文章
返回
Baidu
map