搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化镓基感光栅极高电子迁移率晶体管器件设计与制备

朱彦旭 宋会会 王岳华 李赉龙 石栋

引用本文:
Citation:

氮化镓基感光栅极高电子迁移率晶体管器件设计与制备

朱彦旭, 宋会会, 王岳华, 李赉龙, 石栋

Design and fabrication of high electron mobility transistor devices with gallium nitride-based

Zhu Yan-Xu, Song Hui-Hui, Wang Yue-Hua, Li Lai-Long, Shi Dong
PDF
导出引用
  • GaN基高电子迁移率晶体管(HEMT)作为栅控器件,具有AlGaN/GaN异质结处高浓度的二维电子气(2DEG)及对表面态敏感等特性,在栅位置处与感光功能薄膜的结合是光探测器领域重要的研究方向之一.本文首先提出在GaN基HEMT栅电极上引入光敏材料锆钛酸铅(PZT),将具有光伏效应的铁电薄膜PZT与HEMT栅极结合,提出一种新的“金属/铁电薄膜/金属/半导体(M/F/M/S)”结构;然后在以蓝宝石为衬底的AlGaN/GaN外延片上制备感光栅极HEMT器件.最后,通过PZT的光伏效应来调控沟道中的载流子浓度和通过源漏电流的变化来实现对可见光和紫外光的探测.在365 nm紫外光和普通可见光条件下,对比测试有/无感光栅极的HEMT器件,在较小Vgs电压时,可见光下测得前者较后者的饱和漏源电流Ids的增幅不下降,紫外光下前者较后者的Ids增幅大5.2 mA,由此可知,感光栅PZT在可见光及紫外光下可作用于栅极GaN基HEMT器件并可调控沟道电流.
    Gallium nitride (GaN) and its family of materials (including GaN, InN, AlN and their alloys) are known as the third generation of semiconductor, which has important applications in optoelectronics and microelectronics. In the structure of GaN-based high electron mobility transistor (HEMT) device, there is a relatively large conduction band offset in the AlGaN/GaN heterojunction structure, and it can produce a strong spontaneous and piezoelectric polarization effect in the vicinity of the heterojunction, which can also accumulate high concentrations of two-dimensional electron gas (2DEG) under the condition of no need of intentionally doping at the interface. The surface of Heterojunction AlGaN/GaN interface will form a 2DEG channel, and the 2DEG in potential well is controlled by the gate voltage, also the 2DEG layer is very close to the surface, which is sensitive to the state of the surface. When the surface state changes, it can cause a change in the 2DEG density, thus the concentration of 2DEG can be adjusted by changing the surface states, thereby changing the current between the source and drain. GaN-based HEMT serves as a gate control device, which has a high concentration of 2DEG and is sensitive to the surface state at the AlGaN/GaN heterojunction. According to the basic structure and advantages of the GaN-based HEMT device, the ferroelectric thin film PZT is deposited on the metal gate serving as a light sensitive layer. When the light is incident on the gate, the photo-sensing layer PZT generates the photovoltaic effect, which causes the surface charge of the photosensitive layer to change, and also causes the 2DEG to change, so the input current changes. In this paper, firstly, a new “M/F/M/S” structure is proposed by introducing a photosensitive material PZT on a GaN-based HEMT gate electrode and combining the PZT of a ferroelectric thin film with photovoltaic effect. Secondly, the HEMT device is fabricated on the AlGaN/GaN epitaxial wafer of sapphire substrate, and the photosensitive unit PZT is prepared on the gate, and thus the HEMT device with photosensitive is realized. Finally, the carrier concentration in the channel is regulated by the photovoltaic effect of PZT and 365 nm UV and visible light are detected through changing the source-drain current. The comparative tests under the conditions with and without a photosensitive gate HEMT device show that when the voltage Vgs is smaller, the saturation drain-source current Ids measured under the irradiation of visible light in the former condition is not reduced compared with that in the latter condition, and the increment of Ids measured in the former condition is 5.2 mA larger than in the latter condition. Therefore it can be seen that the PZT can act on the gate GaN-based HEMT device under the irradiation of visible and ultraviolet light and adjust the channel current.
      通信作者: 朱彦旭, zhuyx@bjut.edu.cn
    • 基金项目: 国家科技重大专项(批准号:2017YFB0402800,2017YFB0402803)、教师队伍建设-15青年拔尖项目(批准号:3011000543115002)、中山市科技计划项目(批准号:2014A2FC305)、电子薄膜与集成器件国家重点实验室中山分室开放基金(批准号:412S0601)和北京市自然科学基金(批准号:4142005)资助的课题.
      Corresponding author: Zhu Yan-Xu, zhuyx@bjut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFB0402800, 2017YFB0402803), the Construction of Teachers to 15 Top-Notch Youth Project, China (Grant No.3011000543115002), the Science and Technology Plan Project of Zhongshan Province, China (Grant No. 2014A2FC305), the State Key Laboratory of Electronic Thin Film and Integrated Devices, Zhongshan Branch Open Fund of China (Grant No. 412S0601), and the Natural Science Foundation of Beijing, China (Grant No. 4142005).
    [1]

    Gu W P, Hao Y, Zhang J C, Wang C, Feng Q, Ma X H 2009 Acta Phys. Sin. 58 511 (in Chinese) [谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华 2009 58 511]

    [2]

    Hu W D, Chen X S, Quan Z J, Zhang M X, Huang Y, Xia C S, Lu W, Ye D P 2007 J. Appl. Phys. 102 034502

    [3]

    Zhou Z T, Guo L W, Xing Z G, Ding G J, Tan C L, L L, Liu J, Liu X Y, Jia H Q, Chen H, Zhou J M 2007 Acta Phys. Sin. 56 6013 (in Chinese) [周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕力, 刘建, 刘新宇, 贾海强, 陈弘, 周均铭 2007 56 6013]

    [4]

    Zhou M, Li C Y, Zhao D G 2015 Chin. J. Lumin. 36 1034 (in Chinese) [周梅, 李春燕, 赵德刚 2015 发光学报 36 1034]

    [5]

    Matsunaga T, Hosokawa T, Umetani Y, Takayama R, Kanno I 2002 Phys. Rev. B 66 064102

    [6]

    Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 Appl. Phys. 87 334

    [7]

    Lin Z J, Lu W, Lee J 2003 Appl. Phys. Lett. 82 4364

    [8]

    Yu N, Wang H H, Liu F F, Du Z J, Wang Y H, Song H H, Zhu Y X, Sun J 2015 Chin. J. Lumin. 36 1178 (in Chinese) [于宁, 王红航, 刘飞飞, 杜志娟, 王岳华, 宋会会, 朱彦旭, 孙捷 2015 发光学报 36 1178]

    [9]

    Zheng K 2016 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinese) [郑坤 2016 硕士学位论文 (合肥: 合肥工业大学)]

    [10]

    Gao Q N, Zhu Y, Wang J G, Yang J H 2016 Proceedings of the 14th International Asia Confererece on Industrial Engineering and Management Innovation Tianjin, China, July 25-26, 2015 p297

    [11]

    Fu H, Yang L, Shang Z G, Yang Y P 2013 Electronics World Infrared Light Communication Device 18 116 (in Chinese) [付辉, 阳璐, 尚治国, 杨栎平 2013 电子世界 18 116]

    [12]

    Xu K, Xu C, Guo W, Xie Y Y 2016 Semicond. Photoelectr. 1 30 (in Chinese) [许坤, 徐晨, 郭旺, 解意洋 2016 半导体光电 1 30]

    [13]

    Zhang H B, Yao J D, Shao J M, Li H, Li S W, Bao D H, Wang C X, Yang G W 2014 Sci. Rep. 4 5876

    [14]

    Wang Z J, Chu J R, Maeda R, Kokawaa H 2002 Thin Solid Films 416 66

    [15]

    Zhu Y X, Wang Y H, Song H H, Li L L, Shi D 2016 Chin. J. Lumin. 37 1545 (in Chinese) [朱彦旭, 王岳华, 宋会会, 李莱龙, 石栋 2016 发光学报 37 1545]

    [16]

    Yang B, Liu X X, Li H 2015 Acta Phys. Sin. 64 038807 (in Chinese) [杨彪, 刘向鑫, 李辉 2015 64 038807]

    [17]

    Frunza R, Ricinschi D, Gheorghiu F 2011 J. Alloys Compd. 509 6242

    [18]

    Li F 2015 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [李飞 2015 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [19]

    Li J H 2009 M. S. Thesis (Shanxi: North University of China) (in Chinese) [李珺泓 2009 硕士学位论文 (山西: 中北大学)]

    [20]

    Wang C, Zhang J C, Hao Y, Yang Y 2006 Chin. J. Semicond. 27 1436 (in Chinese) [王冲, 张进城, 郝跃, 杨燕 2006 半导体学报 27 1436]

    [21]

    Neamen D H (translated by Zhao Y Q, Yao S Y, Xie X D) 2010 Semiconductor Physics and Devices: Basic Principles (Beijing: Electronics Industry Press) p211, 212 (in Chinese) [尼曼 D H 著 (赵毅强, 姚素英, 解晓东 译) 2010 半导体物理与器件(北京: 电子工业出版社)第211, 212页]

    [22]

    Qiao H, Yuan J, Xu Z Q, Che C Y, Lin S H, Wang Y S, Song J C, Liu Y, Khan Q, Hoh H Y, Pan C X, Li S J, Bao Q L 2015 ACS Nano 9 1886

    [23]

    Liu Y H, Cao W, Li S J, Li Y, Sun S C, Fu K, Chen C Q, Zhang B S 2015 Chin. J. Lumin. 36 1167 (in Chinese) [刘翌寒, 曹伟, 李绍娟, 李洋, 孙世闯, 付凯, 陈长清, 张宝顺 2015 发光学报 36 1167]

    [24]

    Sun Q 2012 M. S. Thesis (Shanghai: East China Normal University) (in Chinese) [孙倩 2012 硕士学位论文 (上海: 华东师范大学)]

  • [1]

    Gu W P, Hao Y, Zhang J C, Wang C, Feng Q, Ma X H 2009 Acta Phys. Sin. 58 511 (in Chinese) [谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华 2009 58 511]

    [2]

    Hu W D, Chen X S, Quan Z J, Zhang M X, Huang Y, Xia C S, Lu W, Ye D P 2007 J. Appl. Phys. 102 034502

    [3]

    Zhou Z T, Guo L W, Xing Z G, Ding G J, Tan C L, L L, Liu J, Liu X Y, Jia H Q, Chen H, Zhou J M 2007 Acta Phys. Sin. 56 6013 (in Chinese) [周忠堂, 郭丽伟, 邢志刚, 丁国建, 谭长林, 吕力, 刘建, 刘新宇, 贾海强, 陈弘, 周均铭 2007 56 6013]

    [4]

    Zhou M, Li C Y, Zhao D G 2015 Chin. J. Lumin. 36 1034 (in Chinese) [周梅, 李春燕, 赵德刚 2015 发光学报 36 1034]

    [5]

    Matsunaga T, Hosokawa T, Umetani Y, Takayama R, Kanno I 2002 Phys. Rev. B 66 064102

    [6]

    Ambacher O, Foutz B, Smart J, Shealy J R, Weimann N G, Chu K, Murphy M, Sierakowski A J, Schaff W J, Eastman L F, Dimitrov R, Mitchell A, Stutzmann M 2000 Appl. Phys. 87 334

    [7]

    Lin Z J, Lu W, Lee J 2003 Appl. Phys. Lett. 82 4364

    [8]

    Yu N, Wang H H, Liu F F, Du Z J, Wang Y H, Song H H, Zhu Y X, Sun J 2015 Chin. J. Lumin. 36 1178 (in Chinese) [于宁, 王红航, 刘飞飞, 杜志娟, 王岳华, 宋会会, 朱彦旭, 孙捷 2015 发光学报 36 1178]

    [9]

    Zheng K 2016 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinese) [郑坤 2016 硕士学位论文 (合肥: 合肥工业大学)]

    [10]

    Gao Q N, Zhu Y, Wang J G, Yang J H 2016 Proceedings of the 14th International Asia Confererece on Industrial Engineering and Management Innovation Tianjin, China, July 25-26, 2015 p297

    [11]

    Fu H, Yang L, Shang Z G, Yang Y P 2013 Electronics World Infrared Light Communication Device 18 116 (in Chinese) [付辉, 阳璐, 尚治国, 杨栎平 2013 电子世界 18 116]

    [12]

    Xu K, Xu C, Guo W, Xie Y Y 2016 Semicond. Photoelectr. 1 30 (in Chinese) [许坤, 徐晨, 郭旺, 解意洋 2016 半导体光电 1 30]

    [13]

    Zhang H B, Yao J D, Shao J M, Li H, Li S W, Bao D H, Wang C X, Yang G W 2014 Sci. Rep. 4 5876

    [14]

    Wang Z J, Chu J R, Maeda R, Kokawaa H 2002 Thin Solid Films 416 66

    [15]

    Zhu Y X, Wang Y H, Song H H, Li L L, Shi D 2016 Chin. J. Lumin. 37 1545 (in Chinese) [朱彦旭, 王岳华, 宋会会, 李莱龙, 石栋 2016 发光学报 37 1545]

    [16]

    Yang B, Liu X X, Li H 2015 Acta Phys. Sin. 64 038807 (in Chinese) [杨彪, 刘向鑫, 李辉 2015 64 038807]

    [17]

    Frunza R, Ricinschi D, Gheorghiu F 2011 J. Alloys Compd. 509 6242

    [18]

    Li F 2015 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese) [李飞 2015 硕士学位论文 (哈尔滨: 哈尔滨工业大学)]

    [19]

    Li J H 2009 M. S. Thesis (Shanxi: North University of China) (in Chinese) [李珺泓 2009 硕士学位论文 (山西: 中北大学)]

    [20]

    Wang C, Zhang J C, Hao Y, Yang Y 2006 Chin. J. Semicond. 27 1436 (in Chinese) [王冲, 张进城, 郝跃, 杨燕 2006 半导体学报 27 1436]

    [21]

    Neamen D H (translated by Zhao Y Q, Yao S Y, Xie X D) 2010 Semiconductor Physics and Devices: Basic Principles (Beijing: Electronics Industry Press) p211, 212 (in Chinese) [尼曼 D H 著 (赵毅强, 姚素英, 解晓东 译) 2010 半导体物理与器件(北京: 电子工业出版社)第211, 212页]

    [22]

    Qiao H, Yuan J, Xu Z Q, Che C Y, Lin S H, Wang Y S, Song J C, Liu Y, Khan Q, Hoh H Y, Pan C X, Li S J, Bao Q L 2015 ACS Nano 9 1886

    [23]

    Liu Y H, Cao W, Li S J, Li Y, Sun S C, Fu K, Chen C Q, Zhang B S 2015 Chin. J. Lumin. 36 1167 (in Chinese) [刘翌寒, 曹伟, 李绍娟, 李洋, 孙世闯, 付凯, 陈长清, 张宝顺 2015 发光学报 36 1167]

    [24]

    Sun Q 2012 M. S. Thesis (Shanghai: East China Normal University) (in Chinese) [孙倩 2012 硕士学位论文 (上海: 华东师范大学)]

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响.  , 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 刘乃漳, 姚若河, 耿魁伟. AlGaN/GaN高电子迁移率晶体管的栅极电容模型.  , 2021, 70(21): 217301. doi: 10.7498/aps.70.20210700
    [3] 董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平. AlGaN/GaN高电子迁移率晶体管器件电离辐照损伤机理及偏置相关性研究.  , 2020, 69(7): 078501. doi: 10.7498/aps.69.20191557
    [4] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性.  , 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [5] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应.  , 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [6] 刘燕丽, 王伟, 董燕, 陈敦军, 张荣, 郑有炓. 结构参数对N极性面GaN/InAlN高电子迁移率晶体管性能的影响.  , 2019, 68(24): 247203. doi: 10.7498/aps.68.20191153
    [7] 周幸叶, 吕元杰, 谭鑫, 王元刚, 宋旭波, 何泽召, 张志荣, 刘庆彬, 韩婷婷, 房玉龙, 冯志红. 基于脉冲方法的超短栅长GaN基高电子迁移率晶体管陷阱效应机理.  , 2018, 67(17): 178501. doi: 10.7498/aps.67.20180474
    [8] 郭海君, 段宝兴, 袁嵩, 谢慎隆, 杨银堂. 具有部分本征GaN帽层新型AlGaN/GaN高电子迁移率晶体管特性分析.  , 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [9] 王凯, 邢艳辉, 韩军, 赵康康, 郭立建, 于保宁, 邓旭光, 范亚明, 张宝顺. 掺Fe高阻GaN缓冲层特性及其对AlGaN/GaN高电子迁移率晶体管器件的影响研究.  , 2016, 65(1): 016802. doi: 10.7498/aps.65.016802
    [10] 李志鹏, 李晶, 孙静, 刘阳, 方进勇. 高功率微波作用下高电子迁移率晶体管的损伤机理.  , 2016, 65(16): 168501. doi: 10.7498/aps.65.168501
    [11] 刘阳, 柴常春, 于新海, 樊庆扬, 杨银堂, 席晓文, 刘胜北. GaN高电子迁移率晶体管强电磁脉冲损伤效应与机理.  , 2016, 65(3): 038402. doi: 10.7498/aps.65.038402
    [12] 李加东, 程珺洁, 苗斌, 魏晓玮, 张志强, 黎海文, 吴东岷. 生物分子膜门电极AlGaN/GaN高电子迁移率晶体管(HEMT)生物传感器研究.  , 2014, 63(7): 070204. doi: 10.7498/aps.63.070204
    [13] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究.  , 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [14] 马骥刚, 马晓华, 张会龙, 曹梦逸, 张凯, 李文雯, 郭星, 廖雪阳, 陈伟伟, 郝跃. AlGaN/GaN高电子迁移率晶体管中kink效应的半经验模型.  , 2012, 61(4): 047301. doi: 10.7498/aps.61.047301
    [15] 邵庆生, 刘士余, 赵辉, 余大书, 曹茂盛. 三方和四方相PbZr0.5Ti0.5O3 的结构稳定性和电子结构的第一性原理研究.  , 2012, 61(4): 047103. doi: 10.7498/aps.61.047103
    [16] 王冲, 全思, 马晓华, 郝跃, 张进城, 毛维. 增强型AlGaN/GaN高电子迁移率晶体管高温退火研究.  , 2010, 59(10): 7333-7337. doi: 10.7498/aps.59.7333
    [17] 赵晓英, 刘世建, 褚君浩, 戴 宁, 胡古今. 锆钛酸铅双层膜的铁电及光学特性研究.  , 2008, 57(9): 5968-5972. doi: 10.7498/aps.57.5968
    [18] 李 潇, 张海英, 尹军舰, 刘 亮, 徐静波, 黎 明, 叶甜春, 龚 敏. 磷化铟复合沟道高电子迁移率晶体管击穿特性研究.  , 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [19] 李 潇, 刘 亮, 张海英, 尹军舰, 李海鸥, 叶甜春, 龚 敏. 一种新的磷化铟复合沟道高电子迁移率晶体管小信号物理模型.  , 2006, 55(7): 3617-3621. doi: 10.7498/aps.55.3617
    [20] 吕永良, 周世平, 徐得名. 光照下高电子迁移率晶体管特性分析.  , 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
计量
  • 文章访问数:  6715
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-26
  • 修回日期:  2017-09-14
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map