搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于毫米级单晶石墨烯的倍频器性能研究

高庆国 田猛串 李思超 李学飞 吴燕庆

引用本文:
Citation:

基于毫米级单晶石墨烯的倍频器性能研究

高庆国, 田猛串, 李思超, 李学飞, 吴燕庆

Gigahertz frequency doubler based on millimeter-scale single-crystal graphene

Gao Qing-Guo, Tian Meng-Chuan, Li Si-Chao, Li Xue-Fei, Wu Yan-Qing
PDF
导出引用
  • 石墨烯作为一种拥有高电子迁移率和高饱和速度的二维材料,在射频电子学领域具有很大的应用潜力,引起了人们广泛的研究兴趣.近些年随着化学气相沉积制备石墨烯技术的发展,高质量大尺寸的单晶石墨烯生长技术也愈加成熟.本文基于化学气相沉积生长的毫米级单晶石墨烯,在高介电常数介质上制备出高性能的石墨烯倍频器,并且对其倍频特性做了系统的研究.研究结果表明:在输入信号频率为1 GHz时,倍频增益可以达到-23.4 dB,频谱纯度可以达到94%.研究了不同漏极偏压以及输入信号功率下倍频增益的变化特性,随着漏极偏压以及输入信号功率的增加,倍频增益增加.对具有不同跨导和电子空穴电导对称性的器件的倍频增益和频谱纯度随输入信号频率fin的变化关系进行了研究.结果表明,跨导对于倍频增益影响显著,在fin=1 GHz时器件的频谱纯度差别不大,均大于90%,但是随着fin增加至4 GHz,电子空穴电导对称性较差的器件频谱纯度下降至42%,电子空穴电导对称性较好的器件仍能保持85%的频谱纯度.这是电子空穴电导对称性和电子空穴响应速度共同作用的结果.本文的研究结果对于高性能石墨烯倍频器设计具有一定的指导意义.
    Graphene shows great potential applications in ultrahigh speed electronics due to its high carrier mobility and velocity. Nowadays, many radio frequency circuits based on graphene have been realized. For example, graphene frequency doubler is a promising option for signal generation at high frequencies. Graphene frequency doubler can achieve excellent spectral purity, because of its ambipolar transport and highly symmetric transfer characteristics. Here, we present high performance graphene frequency doublers based on millimeter-scale single-crystal graphene on HfO2 and Si substrates. We achieve a high spectral purity degree of larger than 94% without any filtering and the conversion gain is -23.4 dB at fin=1 GHz. The high conversion gain and spectral purity can be attributed to the high-quality millimeter-scale single-crystal graphene and high-quality high- substrates. Furthermore, we investigate the relation of conversion gain to source-drain voltage Vd and input signal power Pin. The results show that the conversion gain increases with source-drain voltage increasing, and the conversion gain also increases with input signal power increasing. The dependence of conversion gain on Vd and Pin can be attributed to the transconductance increasing with Vd and Pin. We compare the conversion gains and spectral purity degrees of graphene frequency doublers with different transconductances and electron-hole symmetries at different frequencies. The result shows that the conversion gain is larger for device with higher transconductance and the spectral purity has a moderate tolerance for the electron-hole symmetry of the graphene transistor at fin=1 GHz. As the working frequency increases to 4 GHz, the spectral purity of the device with weak electron-hole symmetry decreases dramatically, while the spectral purity of the device with better electron-hole symmetry is kept around 85%. We attribute this phenomenon to the different carrier transit times and different electron-hole symmetries of graphene transistors. In conclusion, the short channel graphene transistor with ultrathin gate dielectric and high electron-hole symmetry is needed in order to achieve high performance graphene frequency doubler.
      通信作者: 吴燕庆, yqwu@hust.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61390504,61574066,11404118)资助的课题.
      Corresponding author: Wu Yan-Qing, yqwu@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61390504, 61574066, 11404118).
    [1]

    Schwierz F 2010 Nat. Nanotechnol. 5 487

    [2]

    Wu Y, Jenkins K A, Valdes-Garcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W, Xia F, Avouris P 2012 Nano Lett. 12 3062

    [3]

    Wu Y, Zou X, Sun M, Cao Z, Wang X, Huo S, Zhou J, Yang Y, Yu X, Kong Y 2016 ACS Appl. Mater. Interfaces 8 25645

    [4]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [5]

    Wang H, Hsu A, Kim K K, Kong J, Palacios T 2010 IEEE International Electron Devices Meeting San Francisco, USA, December 6-8, 2010 p23.6.1

    [6]

    Wang Z, Zhang Z, Xu H, Ding L, Wang S, Peng L M 2010 Appl. Phys. Lett. 96 173104

    [7]

    Liao L, Bai J, Cheng R, Zhou H, Liu L, Liu Y, Huang Y, Duan X 2011 Nano Lett. 12 2653

    [8]

    L H, Wu H, Liu J, Huang C, Li J, Yu J, Niu J, Xu Q, Yu Z, Qian H 2014 Nanoscale 6 5826

    [9]

    Andersson M A, Zhang Y, Stake J 2017 IEEE Trans. Microw. Theory Tech. 65 165

    [10]

    Wang H, Hsu A, Wu J, Kong J, Palacios T 2010 IEEE Electron Dev. Lett. 31 906

    [11]

    Yang X, Liu G, Rostami M, Balandin A A, Mohanram K 2011 IEEE Electron Dev. Lett. 32 1328

    [12]

    Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086

    [13]

    Yu C, He Z, Liu Q, Song X, Xu P, Han T, Li J, Feng Z, Cai S 2016 IEEE Electron Dev. Lett. 37 684

    [14]

    Habibpour O, He Z S, Strupinski W, Rorsman N, Zirath H 2017 Sci. Rep. 7 41828

    [15]

    Gan L, Luo Z 2013 ACS Nano 7 9480

    [16]

    Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096

    [17]

    Hao Y, Bharathi M, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B 2013 Science 342 720

    [18]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q 2016 Nat. Mater. 15 43

    [19]

    Wei Z, Fu Y, Liu J, Wang Z, Jia Y, Guo J, Ren L, Chen Y, Zhang H, Huang R, Zhang X 2014 Chin. Phys. B 23 117201

    [20]

    Lakshmi Ganapathi K, Bhat N, Mohan S 2013 Appl. Phys. Lett. 103 073105

    [21]

    Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107

    [22]

    Wu Y, Lin Y M, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74

  • [1]

    Schwierz F 2010 Nat. Nanotechnol. 5 487

    [2]

    Wu Y, Jenkins K A, Valdes-Garcia A, Farmer D B, Zhu Y, Bol A A, Dimitrakopoulos C, Zhu W, Xia F, Avouris P 2012 Nano Lett. 12 3062

    [3]

    Wu Y, Zou X, Sun M, Cao Z, Wang X, Huo S, Zhou J, Yang Y, Yu X, Kong Y 2016 ACS Appl. Mater. Interfaces 8 25645

    [4]

    Wang H, Nezich D, Kong J, Palacios T 2009 IEEE Electron Dev. Lett. 30 547

    [5]

    Wang H, Hsu A, Kim K K, Kong J, Palacios T 2010 IEEE International Electron Devices Meeting San Francisco, USA, December 6-8, 2010 p23.6.1

    [6]

    Wang Z, Zhang Z, Xu H, Ding L, Wang S, Peng L M 2010 Appl. Phys. Lett. 96 173104

    [7]

    Liao L, Bai J, Cheng R, Zhou H, Liu L, Liu Y, Huang Y, Duan X 2011 Nano Lett. 12 2653

    [8]

    L H, Wu H, Liu J, Huang C, Li J, Yu J, Niu J, Xu Q, Yu Z, Qian H 2014 Nanoscale 6 5826

    [9]

    Andersson M A, Zhang Y, Stake J 2017 IEEE Trans. Microw. Theory Tech. 65 165

    [10]

    Wang H, Hsu A, Wu J, Kong J, Palacios T 2010 IEEE Electron Dev. Lett. 31 906

    [11]

    Yang X, Liu G, Rostami M, Balandin A A, Mohanram K 2011 IEEE Electron Dev. Lett. 32 1328

    [12]

    Han S J, Garcia A V, Oida S, Jenkins K A, Haensch W 2014 Nat. Commun. 5 3086

    [13]

    Yu C, He Z, Liu Q, Song X, Xu P, Han T, Li J, Feng Z, Cai S 2016 IEEE Electron Dev. Lett. 37 684

    [14]

    Habibpour O, He Z S, Strupinski W, Rorsman N, Zirath H 2017 Sci. Rep. 7 41828

    [15]

    Gan L, Luo Z 2013 ACS Nano 7 9480

    [16]

    Zhou H, Yu W J, Liu L, Cheng R, Chen Y, Huang X, Liu Y, Wang Y, Huang Y, Duan X 2013 Nat. Commun. 4 2096

    [17]

    Hao Y, Bharathi M, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B 2013 Science 342 720

    [18]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q 2016 Nat. Mater. 15 43

    [19]

    Wei Z, Fu Y, Liu J, Wang Z, Jia Y, Guo J, Ren L, Chen Y, Zhang H, Huang R, Zhang X 2014 Chin. Phys. B 23 117201

    [20]

    Lakshmi Ganapathi K, Bhat N, Mohan S 2013 Appl. Phys. Lett. 103 073105

    [21]

    Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee S K 2009 Appl. Phys. Lett. 94 062107

    [22]

    Wu Y, Lin Y M, Bol A A, Jenkins K A, Xia F, Farmer D B, Zhu Y, Avouris P 2011 Nature 472 74

  • [1] 成佳, 伍亚东, 晏日, 彭雪芳, 朱仁江, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 基于外腔面发射激光器腔内三倍频的可调谐紫外激光器.  , 2024, 73(8): 084202. doi: 10.7498/aps.73.20231923
    [2] 伍亚东, 朱仁江, 晏日, 彭雪芳, 王涛, 蒋丽丹, 佟存柱, 宋晏蓉, 张鹏. 高转换效率腔内倍频外腔面发射蓝光激光器.  , 2024, 73(1): 014203. doi: 10.7498/aps.73.20231278
    [3] 段延敏, 周玉明, 孙瑛璐, 李志红, 张耀举, 王鸿雁, 朱海永. 声光调Q Nd:YVO4晶体级联拉曼倍频窄脉宽657 nm激光器.  , 2021, 70(22): 224209. doi: 10.7498/aps.70.20210695
    [4] 仇巍, 张启鹏, 李秋, 许超宸, 郭建刚. 单层单晶石墨烯与柔性基底界面性能的实验研究.  , 2017, 66(16): 166801. doi: 10.7498/aps.66.166801
    [5] 李晓明, 沈学举, 刘恂, 王琳. KTP倍频器件温度适应性扩展研究.  , 2015, 64(9): 094205. doi: 10.7498/aps.64.094205
    [6] 韩林芷, 赵占霞, 马忠权. 化学气相沉积法制备大尺寸单晶石墨烯的工艺参数研究.  , 2014, 63(24): 248103. doi: 10.7498/aps.63.248103
    [7] 邓青华, 张小民, 丁磊, 唐军, 谢旭东, 卢振华, 赵润昌, 董一方. 应用级联倍频方法提高倍频系统输出稳定性研究.  , 2011, 60(2): 024213. doi: 10.7498/aps.60.024213
    [8] 任爱红, 刘正颖, 张蓉竹, 刘静伦, 孙年春. 准相位匹配倍频系统的带宽性质研究.  , 2010, 59(10): 7050-7054. doi: 10.7498/aps.59.7050
    [9] 张玉萍, 张会云, 何志红, 王鹏, 李喜福, 姚建铨. 36 W侧面抽运腔内倍频Nd:YAG/KTP连续绿光激光器.  , 2009, 58(7): 4647-4651. doi: 10.7498/aps.58.4647
    [10] 宗楠, 崔大复, 李成明, 彭钦军, 许祖彦, 秦莉, 李特, 宁永强, 晏长岭, 王立军. 光抽运垂直扩展腔面发射激光器腔内倍频理论研究.  , 2009, 58(6): 3903-3908. doi: 10.7498/aps.58.3903
    [11] 颜国君, 陈光德, 伍叶龙, 杨建清. 双折射吸收非线性介质薄膜中倍频的产生.  , 2008, 57(1): 265-270. doi: 10.7498/aps.57.265
    [12] 王志明, 徐庆宇, 张世远, 邢定钰, 都有为. 单晶石墨、多晶石墨电导行为的差异.  , 2007, 56(6): 3464-3467. doi: 10.7498/aps.56.3464
    [13] 李瑞宁, 来引娟, 马小涛. 激光二极管抽运Nd∶YVO4和KTP倍频产生单频绿光激发器.  , 2002, 51(8): 1736-1738. doi: 10.7498/aps.51.1736
    [14] 赵波, 吴芸, 孙真荣, 王祖庚. 一种新型有机倍频材料——苯基脲的倍频性能研究.  , 2000, 49(4): 730-732. doi: 10.7498/aps.49.730
    [15] 何京良, 卢兴强, 贾玉磊, 满宝元, 祝世宁, 朱永元. BBO四倍频全固态Nd:YVO4紫外激光器.  , 2000, 49(10): 2106-2108. doi: 10.7498/aps.49.2106
    [16] 吴克琛, 陈创天. Na2SbF5晶体倍频系数的理论计算.  , 1992, 41(9): 1436-1439. doi: 10.7498/aps.41.1436
    [17] 薛英华, 闵乃本, 朱劲松, 冯端. 聚片多畴LiNbO3晶体的倍频效应.  , 1983, 32(12): 1515-1525. doi: 10.7498/aps.32.1515
    [18] 陈创天, 沈荷生. 使用等价轨道法计算AB型晶体的倍频系数.  , 1982, 31(8): 1046-1056. doi: 10.7498/aps.31.1046
    [19] 陈创天, 陈孝琛. 晶体和基团倍频系数间的普遍变换公式.  , 1980, 29(8): 1000-1013. doi: 10.7498/aps.29.1000
    [20] 屠世谷. 利用变容管倍频的一些实验结果.  , 1965, 21(8): 1581-1583. doi: 10.7498/aps.21.1581
计量
  • 文章访问数:  6136
  • PDF下载量:  237
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-28
  • 修回日期:  2017-10-10
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map