-
在北京师范大学GIC4117串列加速器原有离子激发发光(ion beam induced luminescence,IBIL)分析靶室基础上,安装了可实现80900 K温度范围内精确控温的冷热样品台,实现高低温条件下IBIL光谱的测量.添加金硅面垒探测器,在离子辐照材料样品过程中同步采集背散射离子的计数,实现束流的在线监测.在不同温度下,利用2 MeV H+束轰击氟化锂样品,获得的IBIL光谱中可明显观察到温度对不同发光中心发光效果的影响:激子峰和杂质峰发光在低温条件下更为清晰;高温时各类型F色心的发光强度在较小的注量下即可达到饱和值或开始衰减.辐照初期受扰激子峰(296 nm)发光强度的上升过程表明不能排除受扰激子峰与点缺陷发光中心相关的可能性,激子峰强度的上升源自低注量时核弹性碰撞产生的应变键;温度对空位迁徙速率及非辐射复合的影响是造成发光强度随注量演变差异的重要原因.A new ion beam induced luminescence (IBIL) measuring setup, equipped with a custom-made heating/cooling sample stage (the attainable temperature ranges from 80 K to 900 K), has been established on the GIC4117 tandem accelerator in Beijing Normal University. As the yield of back scattering ions is proportional to the beam flux, an Au-Si surface barrier detector is employed to count the back scattering ions synchronously with collecting the IBIL spectra under the multi-channel scaler (MCS) mode of the multichannel analyzer, making it possible to online monitor the beam current. Then, the yield of back scattering ions is used to correct the intensity of the IBIL spectrum and calculate the ion fluence, for eliminating the influence of the beam current fluctuation. IBIL spectra of pure lithium fluoride (LiF) at different temperatures (100, 200, 290, 450, 550 K) under the 2 MeV H+ irradiation are acquired and the significant influence of temperature on luminescence centers is observed. The emission bands relating to exciton recombination (296 and 340 nm) and impurities (400 nm) are more prominent at low temperatures and present quite lower intensities at high temperatures. Moreover, these luminescent intensities decay with ion fluence increase obviously at high temperatures after initially increasing in the early period of irradiation. The initial increase of the disturbed exciton peak at 296 nm can be attributed to the strained bonds produced by nuclear elastic scattering at a low fluence, which was not observed in previous IBIL measurements under high ionization energy density or high ion beam flux. This observed increase indicates that the emission feature may also originate from the emitting centers relating to point defects, not just from exciton transition near lattice or impurities. The luminescent intensities of F2 color centers (peaked at 670 nm) are dominant at all temperatures, while the luminescent intensities of F3+ color centers (peaked at 540 nm) are not obvious at low temperatures and the luminescent intensities of F3-/F2+ color centers (peaked at 880 nm) are weak at high temperatures. The luminescent intensities of these F-type centers reach saturated values at lower fluences at high temperatures. The different evolution behaviors under different temperatures can be due to the influence of temperature on the vacancy migration rate and the non-radiative recombination. In addition, the surface charge accumulation may lead to the luminescent intensities of color centers reaching saturated values at higher fluences, compared with the previous IBIL measurements of LiF. The self-absorption effect would reduce the intensities of F3+ color centers because of the absorption of F-type centers at low temperatures, while the effect is weak at high temperatures due to the degradation of F-type centers.
[1] Huddle J R, Grant P G, Ludington A R, Foster R L 2007 Nucl. Instrum. Meth. Phys. Res. B 261 475
[2] Furumoto K, Tanabe T 2013 J. Nucl. Mater. 442 S511
[3] Lo Giudice A, Re A, Angelici D, Calusi S, Gelli N, Giuntini L, Massi M, Pratesi G 2012 Anal. Bioanal. Chem. 404 277
[4] Marković N, Siketić Z, Cosic D, Jungb H K, Leeb N H, Hanc W T, Jakića M 2015 Nucl. Instrum. Meth. Phys. Res. B 343 167
[5] Brooks R J, Hole D E, Townsend P D, Wu Z, Gonzalo J, Suarez-Garcia A, Knott P 2002 Nucl. Instrum. Meth. Phys. Res. B 190 709
[6] Valotto G, Quaranta A, Piccinini M, Montereali R M 2015 Opt. Mater. 49 1
[7] Crespillo M L, Graham J T, Zhang Y, Weber W J 2016 J. Lumin. 172 208
[8] Baldacchini G, Davidson A T, Kalinov V S, Kozakiewicz A G, Montereali R M, Nichelatti E, Voitovich A P 2007 J. Lumin. 122 371
[9] Ribeiro D R S, Souza D N, Maia A F, Baldochi S L, Caldas L V E 2008 Radiat. Meas. 43 1132
[10] Dergachev A Y, Mirov S B 1998 Opt. Commun. 147 107
[11] Russakova A, Sorokin M V, Schwartz K, Dauletbekovaa A, Akilbekova A, Baizhumanova M, Zdorovetsd M, Koloberdina M 2013 Nucl. Instrum. Meth. Phys. Res. B 313 21
[12] Skuratov V A, Gun K J, Stano J, Zagorski D L 2006 Nucl. Instrum. Meth. Phys. Res. B 245 194
[13] Shiran N, Belsky A, Gektin A, Gridin S, Boiaryntseva I 2013 Radiat. Meas. 56 23
[14] Qiu M L, Chu Y J, Wang G F, Xu M, Zheng L 2017 Chin. Phys. Lett. 34 016104
[15] Skuratov V A, Didyk A Y, Azm S M A A 1994 Nucl. Instrum. Meth. Phys. Res. B 94 480
[16] Qiu M L, Chu Y J, Xu M, Wang G F 2016 J. Nucl. Radiochem. 38 57 (in Chinese)[仇猛淋, 褚莹洁, 胥密, 王广甫2016核化学与放射化学38 57]
[17] Ginhoven R M V, Jnsson H, Corrales L R 2006 J. Non-Cryst. Solids 352 2589
[18] Jimenez-Rey D, Pea-Rodrguez O, Manzano-Santamara J, Olivares J, Muoz-Martin A, Rivera A, Agull-Lpez F 2012 Nucl. Instrum. Meth. Phys. Res. B 286 282
[19] Itoh N, Duffy D M, Khakshouri S, Stoneham A M 2009 J. Phys. Condens. Mat. 21 474205
-
[1] Huddle J R, Grant P G, Ludington A R, Foster R L 2007 Nucl. Instrum. Meth. Phys. Res. B 261 475
[2] Furumoto K, Tanabe T 2013 J. Nucl. Mater. 442 S511
[3] Lo Giudice A, Re A, Angelici D, Calusi S, Gelli N, Giuntini L, Massi M, Pratesi G 2012 Anal. Bioanal. Chem. 404 277
[4] Marković N, Siketić Z, Cosic D, Jungb H K, Leeb N H, Hanc W T, Jakića M 2015 Nucl. Instrum. Meth. Phys. Res. B 343 167
[5] Brooks R J, Hole D E, Townsend P D, Wu Z, Gonzalo J, Suarez-Garcia A, Knott P 2002 Nucl. Instrum. Meth. Phys. Res. B 190 709
[6] Valotto G, Quaranta A, Piccinini M, Montereali R M 2015 Opt. Mater. 49 1
[7] Crespillo M L, Graham J T, Zhang Y, Weber W J 2016 J. Lumin. 172 208
[8] Baldacchini G, Davidson A T, Kalinov V S, Kozakiewicz A G, Montereali R M, Nichelatti E, Voitovich A P 2007 J. Lumin. 122 371
[9] Ribeiro D R S, Souza D N, Maia A F, Baldochi S L, Caldas L V E 2008 Radiat. Meas. 43 1132
[10] Dergachev A Y, Mirov S B 1998 Opt. Commun. 147 107
[11] Russakova A, Sorokin M V, Schwartz K, Dauletbekovaa A, Akilbekova A, Baizhumanova M, Zdorovetsd M, Koloberdina M 2013 Nucl. Instrum. Meth. Phys. Res. B 313 21
[12] Skuratov V A, Gun K J, Stano J, Zagorski D L 2006 Nucl. Instrum. Meth. Phys. Res. B 245 194
[13] Shiran N, Belsky A, Gektin A, Gridin S, Boiaryntseva I 2013 Radiat. Meas. 56 23
[14] Qiu M L, Chu Y J, Wang G F, Xu M, Zheng L 2017 Chin. Phys. Lett. 34 016104
[15] Skuratov V A, Didyk A Y, Azm S M A A 1994 Nucl. Instrum. Meth. Phys. Res. B 94 480
[16] Qiu M L, Chu Y J, Xu M, Wang G F 2016 J. Nucl. Radiochem. 38 57 (in Chinese)[仇猛淋, 褚莹洁, 胥密, 王广甫2016核化学与放射化学38 57]
[17] Ginhoven R M V, Jnsson H, Corrales L R 2006 J. Non-Cryst. Solids 352 2589
[18] Jimenez-Rey D, Pea-Rodrguez O, Manzano-Santamara J, Olivares J, Muoz-Martin A, Rivera A, Agull-Lpez F 2012 Nucl. Instrum. Meth. Phys. Res. B 286 282
[19] Itoh N, Duffy D M, Khakshouri S, Stoneham A M 2009 J. Phys. Condens. Mat. 21 474205
计量
- 文章访问数: 6108
- PDF下载量: 156
- 被引次数: 0