搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

爆轰驱动Cu界面的Richtmyer-Meshkov扰动增长稳定性

殷建伟 潘昊 吴子辉 郝鹏程 段卓平 胡晓棉

引用本文:
Citation:

爆轰驱动Cu界面的Richtmyer-Meshkov扰动增长稳定性

殷建伟, 潘昊, 吴子辉, 郝鹏程, 段卓平, 胡晓棉

Stability analysis of interfacial Richtmyer-Meshkov flow of explosion-driven copper interface

Yin Jian-Wei, Pan Hao, Wu Zi-Hui, Hao Peng-Cheng, Duan Zhuo-Ping, Hu Xiao-Mian
PDF
导出引用
  • 研究了爆轰驱动Cu界面的扰动增长过程,分析了不同初始条件下的扰动增长规律和主要失稳机制.研究结果表明:温度相关的熔化失稳和塑性变形相关的拉伸断裂失稳是界面扰动增长过程的主要失稳机制;高能炸药爆轰驱动Cu材料界面时,冲击波加载引起的温升和扰动增长阶段塑性功转换引起的温升不足以熔化Cu材料,拉伸断裂是导致扰动增长不稳定的主要机制;扰动增长非线性阶段尖钉的最大累积有效塑性应变与尖钉振幅之间存在定标关系,结合熔化条件和断裂应变判据建立的尖钉振幅失稳条件可用于分析界面扰动增长的稳定性.
    In this paper, a stability analysis is given to study the unstable mechanism of the Richtmyer-Meshkov flow of explosion-driven copper interface. The Richtmyer-Meshkov flow refers as an interfacial instability growth under shockwave incident loading. Numerical investigations are performed to check the applicability of the two-dimensional hydrocode, which is named AFE2D, and the physical models of detonation waves propagating in the high explosives, equations of state and the constitutive behaviors of solids in the analysis of Richtmyer-Meshkov flow problems. Here we theoretically analyze the two key issues of the unstable mechanism in Richtmyer-Meshkov flow in solids. The unstable mechanism includes temperature related melting mechanism and the plastic evolution related tensile fracture mechanism. In the analysis of the temperature related unstable mechanisms, the calculated temperature increase during the shockwave compression from the shock Hugoniot data in the shockwave physics is not enough to melt the material near the perturbed interface. On the other hand, the temperature increase from the translation of plastic work during perturbation growth which relats to the distribution of the cumulative effective plastic strain is also not enough to supply the thermal energy which is needed to melt the crystal lattice of solid, either. Therefore, the temperature related melting mechanism is not the main factor of the unstable growth of copper interface under explosion driven. In the analysis of the plastic tensile fracture related unstable mechanism, a scaling law between the maximum cumulative effective plastic strain and the scaled maximum amplitude of spikes is proposed to describe the relationship between the plastic deformation of material and the perturbation growth of interface. Combined with a critical plastic strain fracture criterion, the unstable condition of the scaled maximum amplitude of spikes is given. If the spikes grow sufficiently to meet the unstable condition, the interfacial growth will be unstable. Numerical simulations with varying initial configurations of perturbation and yield strength of materials show good agreement with the theoretical stability analysis. Finally, a criterion to judging whether the growth is stable is discussed in the form of competition between the temperature related unstable mechanism and the tensile fracture unstable mechanism.
      通信作者: 胡晓棉, hu_xiaomian@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11602029)资助的课题.
      Corresponding author: Hu Xiao-Mian, hu_xiaomian@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11602029).
    [1]

    Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445

    [2]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297

    [3]

    Meshkov E E 1969 Sovit. Fluid Dyn. 4 151

    [4]

    Rajan D, Oakley J, Bonazza 2011 Annu. Rev. Fluid Mech. 43 117

    [5]

    Luo X S, Guan B, Zhai Z G, Si T 2016 Phys. Rev. E 93 023110

    [6]

    Jacobs J W 1993 Phys. Fluids A 5 2239

    [7]

    Luo X S, Zhai Z G, Si T, Yang J M 2014 Adv. Mech. 44 201407 (in Chinese)[罗喜胜, 翟志刚, 司廷, 杨基明2014力学进展44 201407]

    [8]

    Zou L Y, Liu J H, Liao S F, Zheng X X, Zhai Z Z, Luo X S 2017 Phys. Rev. E 95 013107

    [9]

    Lindl J D, Landen O, Edwards J, Moses E, NIC Team 2014 Phys. Plasmas 21 020501

    [10]

    Plohr J N, Plohr B J 2005 J. Fluid Mech. 537 55

    [11]

    Mikaelian K O 2013 Phys. Rev. E 87 031003

    [12]

    Piriz A R, Lopez Cela J J, Tahir N A, Hoffmann D H H 2008 Phys. Rev. E 78 056401

    [13]

    Yin J W, Pan H, Wu Z H, Hao P C, Hu X M 2017 Acta Phys. Sin. 66 074701 (in Chinese)[殷建伟, 潘昊, 吴子辉, 郝鹏程, 胡晓棉2017 66 074701]

    [14]

    Dimonte G, Terrones G, Cheren F J, Germann T C, Dunpont V, Kadau K, Buttler W T, Oro D M, Morris C, Preston D L 2011 Phys. Rev. Lett. 107 264502

    [15]

    Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [16]

    Jensen B J, Cheren F J, Prime M B, Fezzaa K, Iverson A J, Carlson C A, Yeager J D, Ramos K J, Hooks D E, Cooley J C, Dimonte G 2015 J. Appl. Phys. 118 195903

    [17]

    Dimonte G, Terrones G, Cherne F J, Ramaprabhu P 2013 J. Appl. Phys. 113 024905

    [18]

    Buttler W T, Or D M, Olsen R T, Cheren F J, Hammerberg J E, Hixson R S, Monfared S K, Pack C L, Rigg P A, Stone J B, Terrones G 2014 J. Appl. Phys. 116 103519

    [19]

    Karkhanis V, Ramaprabhu P, Buttler W T, Hammerberg J E, Cherne F J, Andrews M J 2017 J. Dynamic Behavior Mater. 3 265

    [20]

    Chen Y T, Hong R K, Chen H Y, Ren G W 2016 Acta Phys. Sin. 65 026201 (in Chinese)[陈永涛, 洪仁楷, 陈浩玉, 任国武2016 65 026201]

    [21]

    Rousculp C L, Or D M, Griego J R, Turchi P J, Reinovsky R E, Bradley J T Ⅲ, Cheng B L, Freeman M S, Patten A R 2016 Los Alamos National Laboratory Report No. LA-UR-16-21901

    [22]

    Benson D J 1992 Comput. Methods Appl. Mech. Engrg. 99 235

    [23]

    Wilkins M L 1999 Computer Simulation of Dynamic Phenomena (Berlin Heidelberg:Springer-Verlag)

    [24]

    Sun Z F, Xu H, Li Q Z, Zhang C Y 2010 Chin. J. High Pressure Phys. 24 55 (in Chinese)[孙占峰, 徐辉, 李庆忠, 张崇玉2010高压 24 55]

    [25]

    Liu H F, Song H F, Zhang Q L, Zhang G M, Zhao Y H 2016 Matter Radiat. Extrem. 1 123

    [26]

    Wouchuk J G, Sano T 2015 Phys. Rev. E 91 023005

    [27]

    Mikaelian K O 1994 Phys. Fluids 6 356

    [28]

    Monfared S K, Or D M, Hammerberg J E, LaLone B M, Park C L, Schauer M M, Stevens G D, Stone J B, Turley W D, Buttler W T 2014 J. Appl. Phys. 116 063504

    [29]

    Chen Y T, Ren G W, Tang T G, Hu H B 2013 Acta Phys. Sin. 62 116202 (in Chinese)[陈永涛, 任国武, 汤铁钢, 胡海波2013 62 116202]

    [30]

    Steinberg D J 1996 Lawrence Livermore National Laboratory Report No. UCRL-MA-106439

    [31]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley:University of California Press)

    [32]

    Tang W H, Zhang R Q 2008 Introduction to Theory and Computational of Equation of State (2nd Ed.) (Beijing:Higher Education Press) p237(in Chinese)[汤文辉, 张若棋2008物态方程理论及计算概论(第二版) (北京:高等教育出版社)第237页]

    [33]

    Gao C Y, Zhang L C 2012 Int. J. Plast. 32-33 121

    [34]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

    [35]

    Johnson G R, Cook W H 1985 Eng. Fract. Mech. 21 31

    [36]

    Ikkurthi V R, Chaturvedi S 2004 Int. J. Impact Engrg. 30 275

  • [1]

    Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445

    [2]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297

    [3]

    Meshkov E E 1969 Sovit. Fluid Dyn. 4 151

    [4]

    Rajan D, Oakley J, Bonazza 2011 Annu. Rev. Fluid Mech. 43 117

    [5]

    Luo X S, Guan B, Zhai Z G, Si T 2016 Phys. Rev. E 93 023110

    [6]

    Jacobs J W 1993 Phys. Fluids A 5 2239

    [7]

    Luo X S, Zhai Z G, Si T, Yang J M 2014 Adv. Mech. 44 201407 (in Chinese)[罗喜胜, 翟志刚, 司廷, 杨基明2014力学进展44 201407]

    [8]

    Zou L Y, Liu J H, Liao S F, Zheng X X, Zhai Z Z, Luo X S 2017 Phys. Rev. E 95 013107

    [9]

    Lindl J D, Landen O, Edwards J, Moses E, NIC Team 2014 Phys. Plasmas 21 020501

    [10]

    Plohr J N, Plohr B J 2005 J. Fluid Mech. 537 55

    [11]

    Mikaelian K O 2013 Phys. Rev. E 87 031003

    [12]

    Piriz A R, Lopez Cela J J, Tahir N A, Hoffmann D H H 2008 Phys. Rev. E 78 056401

    [13]

    Yin J W, Pan H, Wu Z H, Hao P C, Hu X M 2017 Acta Phys. Sin. 66 074701 (in Chinese)[殷建伟, 潘昊, 吴子辉, 郝鹏程, 胡晓棉2017 66 074701]

    [14]

    Dimonte G, Terrones G, Cheren F J, Germann T C, Dunpont V, Kadau K, Buttler W T, Oro D M, Morris C, Preston D L 2011 Phys. Rev. Lett. 107 264502

    [15]

    Buttler W T, Or D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B, Terrones G, Tupa D 2012 J. Fluid Mech. 703 60

    [16]

    Jensen B J, Cheren F J, Prime M B, Fezzaa K, Iverson A J, Carlson C A, Yeager J D, Ramos K J, Hooks D E, Cooley J C, Dimonte G 2015 J. Appl. Phys. 118 195903

    [17]

    Dimonte G, Terrones G, Cherne F J, Ramaprabhu P 2013 J. Appl. Phys. 113 024905

    [18]

    Buttler W T, Or D M, Olsen R T, Cheren F J, Hammerberg J E, Hixson R S, Monfared S K, Pack C L, Rigg P A, Stone J B, Terrones G 2014 J. Appl. Phys. 116 103519

    [19]

    Karkhanis V, Ramaprabhu P, Buttler W T, Hammerberg J E, Cherne F J, Andrews M J 2017 J. Dynamic Behavior Mater. 3 265

    [20]

    Chen Y T, Hong R K, Chen H Y, Ren G W 2016 Acta Phys. Sin. 65 026201 (in Chinese)[陈永涛, 洪仁楷, 陈浩玉, 任国武2016 65 026201]

    [21]

    Rousculp C L, Or D M, Griego J R, Turchi P J, Reinovsky R E, Bradley J T Ⅲ, Cheng B L, Freeman M S, Patten A R 2016 Los Alamos National Laboratory Report No. LA-UR-16-21901

    [22]

    Benson D J 1992 Comput. Methods Appl. Mech. Engrg. 99 235

    [23]

    Wilkins M L 1999 Computer Simulation of Dynamic Phenomena (Berlin Heidelberg:Springer-Verlag)

    [24]

    Sun Z F, Xu H, Li Q Z, Zhang C Y 2010 Chin. J. High Pressure Phys. 24 55 (in Chinese)[孙占峰, 徐辉, 李庆忠, 张崇玉2010高压 24 55]

    [25]

    Liu H F, Song H F, Zhang Q L, Zhang G M, Zhao Y H 2016 Matter Radiat. Extrem. 1 123

    [26]

    Wouchuk J G, Sano T 2015 Phys. Rev. E 91 023005

    [27]

    Mikaelian K O 1994 Phys. Fluids 6 356

    [28]

    Monfared S K, Or D M, Hammerberg J E, LaLone B M, Park C L, Schauer M M, Stevens G D, Stone J B, Turley W D, Buttler W T 2014 J. Appl. Phys. 116 063504

    [29]

    Chen Y T, Ren G W, Tang T G, Hu H B 2013 Acta Phys. Sin. 62 116202 (in Chinese)[陈永涛, 任国武, 汤铁钢, 胡海波2013 62 116202]

    [30]

    Steinberg D J 1996 Lawrence Livermore National Laboratory Report No. UCRL-MA-106439

    [31]

    Marsh S P 1980 LASL Shock Hugoniot Data (Berkeley:University of California Press)

    [32]

    Tang W H, Zhang R Q 2008 Introduction to Theory and Computational of Equation of State (2nd Ed.) (Beijing:Higher Education Press) p237(in Chinese)[汤文辉, 张若棋2008物态方程理论及计算概论(第二版) (北京:高等教育出版社)第237页]

    [33]

    Gao C Y, Zhang L C 2012 Int. J. Plast. 32-33 121

    [34]

    Steinberg D J, Cochran S G, Guinan M W 1980 J. Appl. Phys. 51 1498

    [35]

    Johnson G R, Cook W H 1985 Eng. Fract. Mech. 21 31

    [36]

    Ikkurthi V R, Chaturvedi S 2004 Int. J. Impact Engrg. 30 275

  • [1] 雷照康, 武耀蓉, 黄晨阳, 莫润阳, 沈壮志, 王成会, 郭建中, 林书玉. 驻波场中环状空化泡聚集结构的稳定性分析.  , 2024, 73(8): 084301. doi: 10.7498/aps.73.20231956
    [2] 孙贝贝, 叶文华, 张维岩. 密度扰动的类Richtmyer-Meshkov不稳定性增长及其与无扰动界面耦合的数值模拟.  , 2023, 72(19): 194701. doi: 10.7498/aps.72.20230928
    [3] 李碧勇, 彭建祥, 谷岩, 贺红亮. 爆轰加载下高纯铜界面Rayleigh-Taylor不稳定性实验研究.  , 2020, 69(9): 094701. doi: 10.7498/aps.69.20191999
    [4] 李宁, 吕晓静, 翁春生. 基于光强与吸收率非线性同步拟合的吸收光谱测量方法.  , 2018, 67(5): 057801. doi: 10.7498/aps.67.20171905
    [5] 殷建伟, 潘昊, 吴子辉, 郝鹏程, 胡晓棉. 爆轰加载下弹塑性固体Richtmyer-Meshkov流动的扰动增长规律.  , 2017, 66(7): 074701. doi: 10.7498/aps.66.074701
    [6] 王超, 刘骋远, 胡元萍, 刘志宏, 马建峰. 社交网络中信息传播的稳定性研究.  , 2014, 63(18): 180501. doi: 10.7498/aps.63.180501
    [7] 李秀平, 王善进, 陈琼, 罗诗裕. 参数激励与晶体摆动场辐射的稳定性.  , 2013, 62(22): 224102. doi: 10.7498/aps.62.224102
    [8] 王参军, 李江城, 梅冬成. 噪声对集合种群稳定性的影响.  , 2012, 61(12): 120506. doi: 10.7498/aps.61.120506
    [9] 张娟, 周志刚, 石玉仁, 杨红娟, 段文山. 修正KP方程及其孤波解的稳定性.  , 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [10] 薛纭, 刘延柱. Kirchhoff弹性直杆在力螺旋作用下的稳定性.  , 2009, 58(10): 6737-6742. doi: 10.7498/aps.58.6737
    [11] 王作雷. 一类简化Lang-Kobayashi方程的Hopf分岔及其稳定性.  , 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [12] 王晓秋, 王保林. 嵌入La和Gd原子的Si24笼团簇的稳定性.  , 2008, 57(10): 6259-6264. doi: 10.7498/aps.57.6259
    [13] 欧阳玉, 彭景翠, 王 慧, 易双萍. 碳纳米管的稳定性研究.  , 2008, 57(1): 615-620. doi: 10.7498/aps.57.615
    [14] 邹继军, 常本康, 杨 智, 高 频, 乔建良, 曾一平. GaAs光电阴极在不同强度光照下的稳定性.  , 2007, 56(10): 6109-6113. doi: 10.7498/aps.56.6109
    [15] 李 娟, 吴春亚, 赵淑云, 刘建平, 孟志国, 熊绍珍, 张 芳. 微晶硅薄膜晶体管稳定性研究.  , 2006, 55(12): 6612-6616. doi: 10.7498/aps.55.6612
    [16] 王 岩, 韩晓艳, 任慧志, 侯国付, 郭群超, 朱 锋, 张德坤, 孙 建, 薛俊明, 赵 颖, 耿新华. 相变域硅薄膜材料的光稳定性.  , 2006, 55(2): 947-951. doi: 10.7498/aps.55.947
    [17] 张 凯, 冯 俊. 相对论Birkhoff系统的对称性与稳定性.  , 2005, 54(7): 2985-2989. doi: 10.7498/aps.54.2985
    [18] 欧阳世根, 江德生, 佘卫龙. 复色光伏孤子的稳定性.  , 2004, 53(9): 3033-3041. doi: 10.7498/aps.53.3033
    [19] 文潮, 孙德玉, 李迅, 关锦清, 刘晓新, 林英睿, 唐仕英, 周刚, 林俊德, 金志浩. 炸药爆轰法制备纳米石墨粉及其在高压合成金刚石中的应用.  , 2004, 53(4): 1260-1264. doi: 10.7498/aps.53.1260
    [20] 文 潮, 金志浩, 李 迅, 孙德玉, 关锦清, 刘晓新, 林英睿, 唐仕英, 周 刚, 林俊德. 炸药爆轰制备纳米石墨粉储放氢性能实验研究.  , 2004, 53(7): 2384-2388. doi: 10.7498/aps.53.2384
计量
  • 文章访问数:  5648
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-25
  • 修回日期:  2017-05-27
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map