搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维颗粒堆积中压力问题的格点系统模型

张兴刚 戴丹

引用本文:
Citation:

二维颗粒堆积中压力问题的格点系统模型

张兴刚, 戴丹

Lattice model for pressure problems in two-dimensional granular columns

Zhang Xing-Gang, Dai Dan
PDF
导出引用
  • 为了便于从理论上探究粮仓效应产生的机理,处理筒仓中颗粒介质的应力分布等问题,将二维颗粒堆积简化为格点系统,并且以随机堆积为物理背景提出了一个由吸收系数p及侧向传递系数q决定的力传递模型.给出了矩阵形式的力传递方程,提出基于二阶差分方程的方法同时求解传递系数矩阵的特征值和特征向量,从理论上导出了一种典型情况下容器底部压力分布与顶部压力分布的关系式.对有效质量随总质量变化关系的理论分析表明,该模型可以给出与Janssen模型类似的结果.对无负载情况下的底部应力分布进行了理论计算,结果表明容器底部中央应力最大,离中央越远应力越小.运用数值计算讨论了p与q对容器底部压力随堆积高度变化曲线的影响.
    In order to make it easier to investigate some problems such as the mechanism of Janssen effect and the stress distribution in granular medium, we simplify a granular column into a lattice system, in which a lattice point represents a small lump of granular medium and only neighbor interactions are considered. To study the disordered granular columns, a force propagation lattice model determined by the absorption coefficient p and the lateral transfer coefficient q is proposed, and this model is analyzed from the theoretical view. Firstly, the equation of force propagation in the matrix form is given, and this equation is determined by a tridiagonal matrix A(p,q) that is called transfer coefficient matrix. Based on the force transfer equation, the bottom force distribution varying with the top force distribution and the layer of lattice system is deduced, and its analytical solution refers to the similarity diagonalization of matrix A(p, q). Then, a method based on the second order difference equations is proposed to obtain the eigenvalues and eigenvectors of the transfer coefficient matrix. The eigenvalues and eigenvectors of A(p, q) can be rigorously deduced for a typical case, and with these results the pressure distribution relationship between the top and the bottom of the container is given. Based on these theoretical expressions, the relationship between the effective mass and the total mass of granular medium is deduced, and it means that the force propagation model and the Janssen model can lead to similar results. Moreover, the bottom stress distribution is calculated without the top load. Calculations show that the stress distribution reaches a maximum at the center bottom and drops down to either side. Finally, numerical calculations are performed to investigate the effects of parameters p and q on the relation between bottom pressure and packing height. Numerical results show that the saturated value of pressure decreases while parameter p or q increases.
      通信作者: 张兴刚, xgzhang@gzu.edu.cn
    • 基金项目: 贵州省科技合作计划(批准号:20157641)、贵州大学引进人才科研基金(批准号:201334)和贵州大学教育教学改革研究项目(批准号:JGYB201517)资助的课题.
      Corresponding author: Zhang Xing-Gang, xgzhang@gzu.edu.cn
    • Funds: Project supported by the Science and Technology Cooperation Project of Guizhou Province, China (Grant No. 20157641), the Scientific Research Foundation for Talents of Guizhou University, China (Grant No. 201334), and the Education and Teaching Reform Project of Guizhou University, China (Grant No. JGYB201517).
    [1]

    Lu K Q, Liu J X 2004 Physics 33 629 (in Chinese)[陆坤权, 刘寄星2004物理33 629]

    [2]

    de Gennes P G 1999 Rev. Mod. Phys. 71 374

    [3]

    Vanel L, Claudin P, Bouchaud J P, Cates M E, Wittmer J P 2000 Phys. Rev. Lett. 84 1439

    [4]

    Sun Q C, Hou M Y, Jin F 2011 The Physics and Mechanics of Granular Matter (Beijing:Science Press) (in Chinese)[孙其诚, 厚美瑛, 金峰2011颗粒物质物理与力学(北京:科学出版社)]

    [5]

    Bertho Y, Frdrique G D, Hulin J P 2003 Phys. Rev. Lett. 90 144301

    [6]

    Peng Z, Li X Q, Jiang L, Fu L P, Jiang Y M 2009 Acta Phys. Sin. 58 2090 (in Chinese)[彭政, 李湘群, 蒋礼, 符力平, 蒋亦民2009 58 2090]

    [7]

    Wambaugh J F, Hartley R R, Behringer R P 2010 Eur. Phys. J. E 32 135

    [8]

    Li X Q, Jiang Y M, Peng Z 2010 J. Shandong Univ. (Natural Science) 45 101 (in Chinese)[李湘群, 蒋亦民, 彭政2010山东大学学报45 101]

    [9]

    Cambau T, Hure J, Marthelot J 2013 Phys. Rev. E 88 022204

    [10]

    Li Z F, Peng Z, Jiang Y M 2014 Acta Phys. Sin. 63 104503 (in Chinese)[李智峰, 彭政, 蒋亦民2014 63 104503]

    [11]

    Landry J W, Grest G S, Silbert L E, Plimpton S J 2003 Phys. Rev. E 67 274

    [12]

    Marconi U M B, Petri A, Vulpiani A 2000 Physica A 280 279

    [13]

    Zhang X G, Hu L, Long Z W 2006 Chin. J. Comput. Phys. 23 642 (in Chinese)[张兴刚, 胡林, 隆正文2006计算物理23 642]

    [14]

    Jiang Y M, Zheng H P 2008 Acta Phys. Sin. 57 7360 (in Chinese)[蒋亦民, 郑鹤鹏2008 57 7360]

    [15]

    Gendelman O, Pollack Y G, Procaccia I 2016 Phys. Rev. Lett. 116 078001

    [16]

    Liu C, Nagel S R, Schecter D A, Coppersmith S N, Majumdar S, Narayan O, Witten T A 1995 Science 269 513

    [17]

    Coppersmith S N, Liu C, Majumdar S, Narayan O, Witten T 1996 Phys. Rev. E 53 4673

    [18]

    Yang S L 2010 Math in Practice and Theory 40 155 (in Chinese)[杨胜良2010数学的实践与认识40 155]

  • [1]

    Lu K Q, Liu J X 2004 Physics 33 629 (in Chinese)[陆坤权, 刘寄星2004物理33 629]

    [2]

    de Gennes P G 1999 Rev. Mod. Phys. 71 374

    [3]

    Vanel L, Claudin P, Bouchaud J P, Cates M E, Wittmer J P 2000 Phys. Rev. Lett. 84 1439

    [4]

    Sun Q C, Hou M Y, Jin F 2011 The Physics and Mechanics of Granular Matter (Beijing:Science Press) (in Chinese)[孙其诚, 厚美瑛, 金峰2011颗粒物质物理与力学(北京:科学出版社)]

    [5]

    Bertho Y, Frdrique G D, Hulin J P 2003 Phys. Rev. Lett. 90 144301

    [6]

    Peng Z, Li X Q, Jiang L, Fu L P, Jiang Y M 2009 Acta Phys. Sin. 58 2090 (in Chinese)[彭政, 李湘群, 蒋礼, 符力平, 蒋亦民2009 58 2090]

    [7]

    Wambaugh J F, Hartley R R, Behringer R P 2010 Eur. Phys. J. E 32 135

    [8]

    Li X Q, Jiang Y M, Peng Z 2010 J. Shandong Univ. (Natural Science) 45 101 (in Chinese)[李湘群, 蒋亦民, 彭政2010山东大学学报45 101]

    [9]

    Cambau T, Hure J, Marthelot J 2013 Phys. Rev. E 88 022204

    [10]

    Li Z F, Peng Z, Jiang Y M 2014 Acta Phys. Sin. 63 104503 (in Chinese)[李智峰, 彭政, 蒋亦民2014 63 104503]

    [11]

    Landry J W, Grest G S, Silbert L E, Plimpton S J 2003 Phys. Rev. E 67 274

    [12]

    Marconi U M B, Petri A, Vulpiani A 2000 Physica A 280 279

    [13]

    Zhang X G, Hu L, Long Z W 2006 Chin. J. Comput. Phys. 23 642 (in Chinese)[张兴刚, 胡林, 隆正文2006计算物理23 642]

    [14]

    Jiang Y M, Zheng H P 2008 Acta Phys. Sin. 57 7360 (in Chinese)[蒋亦民, 郑鹤鹏2008 57 7360]

    [15]

    Gendelman O, Pollack Y G, Procaccia I 2016 Phys. Rev. Lett. 116 078001

    [16]

    Liu C, Nagel S R, Schecter D A, Coppersmith S N, Majumdar S, Narayan O, Witten T A 1995 Science 269 513

    [17]

    Coppersmith S N, Liu C, Majumdar S, Narayan O, Witten T 1996 Phys. Rev. E 53 4673

    [18]

    Yang S L 2010 Math in Practice and Theory 40 155 (in Chinese)[杨胜良2010数学的实践与认识40 155]

  • [1] 关建飞, 俞潇, 丁冠天, 陈陶, 陆云清. 金属光栅覆盖分布式布拉格反射镜结构的透射增强效应.  , 2024, 73(11): 117301. doi: 10.7498/aps.73.20240357
    [2] 叶高杰, 殷澄, 黎思瑜, 俞强, 王贤平, 吴坚. 金属纳米颗粒双圆环阵列的表面格点共振效应.  , 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [3] 洪浩艺, 高美琪, 桂龙成, 华俊, 梁剑, 史君, 邹锦涛. 格点量子色动力学数据的虚部分布与信号改进.  , 2023, 72(20): 201101. doi: 10.7498/aps.72.20230869
    [4] 张召泉, 时朋朋, 苟晓凡. 铁磁板磁巴克豪森应力检测的解析模型.  , 2022, 71(9): 097501. doi: 10.7498/aps.71.20212253
    [5] 任波, 佘彦超, 徐小凤, 叶伏秋. 高阶效应下对称三量子点系统中光孤子稳定性研究.  , 2021, 70(22): 224205. doi: 10.7498/aps.70.20210942
    [6] 高洁, 张民仓. 包含非中心电耦极矩的环状非谐振子势场赝自旋对称性的三对角化表示.  , 2016, 65(2): 020301. doi: 10.7498/aps.65.020301
    [7] 朱光, 刘建华, 程军胜, 冯忠奎, 戴银明, 王秋良. 25T超导磁体优化中线圈数量影响分析.  , 2016, 65(5): 058401. doi: 10.7498/aps.65.058401
    [8] 李策, 冯国英, 杨火木. 流体直接冷却薄板条介质温度及应力的解析表达.  , 2016, 65(5): 054204. doi: 10.7498/aps.65.054204
    [9] 张民仓. 环状非有心球谐振子势场赝自旋对称性的三对角化表示.  , 2012, 61(24): 240301. doi: 10.7498/aps.61.240301
    [10] 琚鑫, 郭健宏. 点间耦合强度对三耦合量子点系统微分电导的影响.  , 2011, 60(5): 057302. doi: 10.7498/aps.60.057302
    [11] 王霞, 王自霞, 吕浩, 赵秋玲. 全息干涉光学格点一到三维空间维度的简捷变换.  , 2010, 59(7): 4656-4660. doi: 10.7498/aps.59.4656
    [12] 黄书文, 刘涛, 汪克林. DNA模型的有限格点系的严格对角化解.  , 2010, 59(3): 2033-2037. doi: 10.7498/aps.59.2033
    [13] 彭政, 李湘群, 蒋礼, 符力平, 蒋亦民. 应力未饱和粮仓系统中器壁与颗粒的摩擦阻力.  , 2009, 58(3): 2090-2096. doi: 10.7498/aps.58.2090
    [14] 周旺民, 蔡承宇, 王崇愚, 尹姝媛. 埋置量子点应力分布的有限元分析.  , 2009, 58(8): 5585-5590. doi: 10.7498/aps.58.5585
    [15] 蒋亦民, 郑鹤鹏. 一种颗粒底部压力不趋向饱和的粮仓系统.  , 2008, 57(11): 7360-7366. doi: 10.7498/aps.57.7360
    [16] 文玉华, 邵桂芳, 朱梓忠. 金属纳米线应力分布特征的原子级模拟研究.  , 2008, 57(2): 1013-1018. doi: 10.7498/aps.57.1013
    [17] 高国良, 钱昌吉, 李 洪, 谷温静, 黄晓虹, 叶高翔. 无格点基底表面的杂质分布对分枝状凝聚体的影响.  , 2006, 55(7): 3349-3354. doi: 10.7498/aps.55.3349
    [18] 李养贤, 孟凡斌, 刘何燕, 曲静萍, 王文洪, 崔玉亭, 柳祝红, 陈京兰, 吴光恒. 单晶Ni2MnGa中取向内应力对变体分布规律的研究.  , 2003, 52(3): 672-676. doi: 10.7498/aps.52.672
    [19] 谢晓明, 蒋亦民, 王焕友, 曹晓平, 刘 佑. 颗粒堆密度变化对堆底压力分布的影响.  , 2003, 52(9): 2194-2199. doi: 10.7498/aps.52.2194
    [20] 厉彦民, 章立源. 对角无序对三重态双极化子系统的超导电性的影响.  , 1987, 36(6): 796-800. doi: 10.7498/aps.36.796
计量
  • 文章访问数:  5869
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-20
  • 修回日期:  2017-05-29
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map