搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高极化纯度的超表面透镜设计与应用

高向军 朱莉 郭文龙

引用本文:
Citation:

高极化纯度的超表面透镜设计与应用

高向军, 朱莉, 郭文龙

Design and application of high polarized purity metasurface lens

Gao Xiang-Jun, Zhu Li, Guo Wen-Long
PDF
导出引用
  • 针对超表面在透镜方面的应用,基于各向异性超表面单元设计了一款高极化纯度的聚焦超表面透镜,并探讨了其在高增益高极化纯度天线方面的应用.设计了一款具有极化滤波特性的各向异性超表面单元,单元对x极化波保持高透性的同时,对y极化波保持近乎为零的透射率.利用该型单元设计了焦距为30 mm、阵列大小为105 mm105 mm、单元数为2121的聚焦超表面透镜.根据光路可逆原理,焦点处发出的球面波被超表面透镜有效转化为平面波,从而达到提高天线增益的目标.实验中分别用不同极化形式的球面波照射聚焦超表面来研究超表面对不同极化波的控制特性.结果表明,x极化波照射时,超表面工作于透镜模式,球面波转化为平面波,天线增益大大提高;y极化波照射时,超表面类似于金属板,将入射波全部反射;x/y极化混合波照射时,天线增益大大提高,且极化隔离度高于25 dB,充分说明设计的聚焦超表面在提高x极化波增益的同时可高效滤除y极化波,达到了高增益高极化纯度的目标.
    Dealing with potential applications of metasurface in lens technologies, we propose a focusing metasurface with high polarized purity based on anisotropic elements, and then put it into application of high gain antenna with high polarized purity. Firstly, we design a metasurface cell with the polarization filtering characteristic, which is capable of transmitting the x-polarized waves efficiently while reflecting the y-polarized waves completely. By changing the metallic patch size, we can modulate the phase shift for the x-polarized transmitting waves. Then by imposing a hyperboloidal phase profile onto the surface, we design a metasurface lens with 105 mm105 mm in size, 2121 in cell number, and 30 mm in focal length. According to the principle of reversibility of light path, the spherical waves emitted from the patch antenna can be converted into plane waves by the focusing metasurface lens, which is used to improve the antenna gain. As for the experiment, we tend to obtain the metasurface lens impinged by differently polarized waves in order to study the lens response to differently polarized waves. The results show that the metasurface acts as a lens when impinged by the x-polarized waves but serves as a reflector when illuminated by the y-polarized waves. That is to say, the y-polarized waves are mostly filtered out while the x-polarized waves are efficiently transmitted and focused, which is in good accordance with the designed principle. Assuming that a patch antenna emits the x/y-polarized waves at the focal point, we obtain not only the antenna gain improved remarkably but also polarized isolation above 25 dB in the operating bandwidth of the designed metasurface. The results of the antenna application give a further proof of the designed lens which eventually contributes to the high gain and high polarized purity of the lens antenna.
      通信作者: 郭文龙, 13259461383@163.com
    • 基金项目: 国家自然科学基金(批准号:61372034)资助的课题.
      Corresponding author: Guo Wen-Long, 13259461383@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61372034).
    [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780.

    [2]

    Yu N F, Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [3]

    Zhang K, Ding X M, Zhang L, Wu Q 2014 New J. Phys. 16 103020

    [4]

    Pu M B, Chen P, Wang C T, Wang Y Q, Zhao Z Y, Hu C G, Huang C, Luo X G 2013 AIP Adv. 3 052136

    [5]

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese)[孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾2013 62 104201]

    [6]

    Wei Z Y, Cao Y, Su X P, Gong Z J, Long Y, Li H Q 2013 Opt. Express 21 010739

    [7]

    Guo W L, Wang G M, Li H P, Hou H S 2016 Acta Phys. Sin. 65 074101 (in Chinese)[郭文龙, 王光明, 李海鹏, 侯海生2016 65 074101]

    [8]

    Yang Q L, Gu J Q, Wang D Y, Zhang X Q, Tian Z, Ouyang C M, Ranjan S, Han J G, Zhang W L 2014 Opt. Express 22 25931

    [9]

    Cheng J R, Hossein M 2014 Opt. Lett. 39 2719

    [10]

    Lee J H, Yoon J W, Jung M J, Hong J K, Song S H, Magnusson R 2014 Appl. Phys. Lett. 104 233505

    [11]

    Saeidi C, Weide D V D 2015 Appl. Phys. Lett. 106 113110

    [12]

    Kang M, Feng T H, Wang H T, Li J S 2012 Opt. Express 20 15883

    [13]

    Fleury R, Sounas D L, Alu A 2014 Phys. Rev. Lett. 113 023903

    [14]

    Qu S W, Wu W W, Chen B J, Yi H, Bai X, Ng K B, Chan C H 2015 Sci. Rep. 5 963

    [15]

    Aieta F, Genevet P, Kats M A, Yu N F, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932

    [16]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940

    [17]

    Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I 2013 Nano Lett. 13 829

    [18]

    Li H P, Wang G M, Xu H X, Cai T, Liang J G 2015 IEEE Trans. Antennas. Propag. 63 5144

    [19]

    Li T J, Liang J G, Li H P 2016 Acta Phys. Sin. 65 104101 (in Chinese)[李唐景, 梁建刚, 李海鹏2016 65 104101]

    [20]

    Ke Y G, Liu Y C, Zhou J X, Liu Y Y, Luo H L, Wen S C 2016 Appl. Phys. Lett. 108 101102

    [21]

    Ke Y G, Liu Z X, Liu Y C, Shu W X, Luo H L, Wen S C 2016 Appl. Phys. Lett. 109 181104

    [22]

    Ke Y G, Liu Y C, Zhou J X, Liu Y Y, Luo H L, Wen S C 2015 Opt. Express 23 33079

    [23]

    Li Y, Jiang X, Li R Q, Liang B, Zou X Y, Yin L L, Cheng J C 2014 Phys. Rev. Appl. 2 064002

    [24]

    Hu D, Moreno G, Wang X K, He J W, Chahadih A, Xiw Z W, Wang B, Akalin T, Zhang Y 2014 Opt. Commun. 322 164

  • [1]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780.

    [2]

    Yu N F, Yu N F, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333

    [3]

    Zhang K, Ding X M, Zhang L, Wu Q 2014 New J. Phys. 16 103020

    [4]

    Pu M B, Chen P, Wang C T, Wang Y Q, Zhao Z Y, Hu C G, Huang C, Luo X G 2013 AIP Adv. 3 052136

    [5]

    Sun Y Y, Han L, Shi X Y, Wang Z N, Liu D H 2013 Acta Phys. Sin. 62 104201 (in Chinese)[孙彦彦, 韩璐, 史晓玉, 王兆娜, 刘大禾2013 62 104201]

    [6]

    Wei Z Y, Cao Y, Su X P, Gong Z J, Long Y, Li H Q 2013 Opt. Express 21 010739

    [7]

    Guo W L, Wang G M, Li H P, Hou H S 2016 Acta Phys. Sin. 65 074101 (in Chinese)[郭文龙, 王光明, 李海鹏, 侯海生2016 65 074101]

    [8]

    Yang Q L, Gu J Q, Wang D Y, Zhang X Q, Tian Z, Ouyang C M, Ranjan S, Han J G, Zhang W L 2014 Opt. Express 22 25931

    [9]

    Cheng J R, Hossein M 2014 Opt. Lett. 39 2719

    [10]

    Lee J H, Yoon J W, Jung M J, Hong J K, Song S H, Magnusson R 2014 Appl. Phys. Lett. 104 233505

    [11]

    Saeidi C, Weide D V D 2015 Appl. Phys. Lett. 106 113110

    [12]

    Kang M, Feng T H, Wang H T, Li J S 2012 Opt. Express 20 15883

    [13]

    Fleury R, Sounas D L, Alu A 2014 Phys. Rev. Lett. 113 023903

    [14]

    Qu S W, Wu W W, Chen B J, Yi H, Bai X, Ng K B, Chan C H 2015 Sci. Rep. 5 963

    [15]

    Aieta F, Genevet P, Kats M A, Yu N F, Blanchard R, Gaburro Z, Capasso F 2012 Nano Lett. 12 4932

    [16]

    Li X, Xiao S Y, Cai B G, He Q, Cui T J, Zhou L 2012 Opt. Lett. 37 4940

    [17]

    Pors A, Nielsen M G, Eriksen R L, Bozhevolnyi S I 2013 Nano Lett. 13 829

    [18]

    Li H P, Wang G M, Xu H X, Cai T, Liang J G 2015 IEEE Trans. Antennas. Propag. 63 5144

    [19]

    Li T J, Liang J G, Li H P 2016 Acta Phys. Sin. 65 104101 (in Chinese)[李唐景, 梁建刚, 李海鹏2016 65 104101]

    [20]

    Ke Y G, Liu Y C, Zhou J X, Liu Y Y, Luo H L, Wen S C 2016 Appl. Phys. Lett. 108 101102

    [21]

    Ke Y G, Liu Z X, Liu Y C, Shu W X, Luo H L, Wen S C 2016 Appl. Phys. Lett. 109 181104

    [22]

    Ke Y G, Liu Y C, Zhou J X, Liu Y Y, Luo H L, Wen S C 2015 Opt. Express 23 33079

    [23]

    Li Y, Jiang X, Li R Q, Liang B, Zou X Y, Yin L L, Cheng J C 2014 Phys. Rev. Appl. 2 064002

    [24]

    Hu D, Moreno G, Wang X K, He J W, Chahadih A, Xiw Z W, Wang B, Akalin T, Zhang Y 2014 Opt. Commun. 322 164

  • [1] 李豪, 庞永强, 屈冰玥, 郑江山, 徐卓. 光学透明超表面透镜及其无线通信效率增强.  , 2024, 73(14): 144104. doi: 10.7498/aps.73.20240464
    [2] 徐平, 李雄超, 肖钰斐, 杨拓, 张旭琳, 黄海漩, 王梦禹, 袁霞, 徐海东. 长红外双波长共聚焦超透镜设计研究.  , 2023, 72(1): 014208. doi: 10.7498/aps.72.20221752
    [3] 钱黎明, 孙梦然, 郑改革. α相三氧化钼中各向异性双曲声子极化激元的耦合性质.  , 2023, 72(7): 077101. doi: 10.7498/aps.72.20222144
    [4] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面.  , 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [5] 红兰, 戈君, 双山, 刘达权. Rashba效应和Zeeman效应对各向异性量子点中束缚磁极化子性质的影响.  , 2022, 71(1): 016301. doi: 10.7498/aps.71.20210803
    [6] 丁继飞, 刘文兵, 李含辉, 罗奕, 谢陈凯, 黄黎蓉. 大焦深离轴超透镜的设计与制作.  , 2021, 70(19): 197802. doi: 10.7498/aps.70.20202235
    [7] 红兰, 戈君. Rashba效应和Zeeman效应对各向异性量子点中束缚磁极化子性质的影响.  , 2021, (): . doi: 10.7498/aps.70.20210803
    [8] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像.  , 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [9] 秦飞, 洪明辉, 曹耀宇, 李向平. 平面超透镜的远场超衍射极限聚焦和成像研究进展.  , 2017, 66(14): 144206. doi: 10.7498/aps.66.144206
    [10] 范庆斌, 徐挺. 基于电磁超表面的透镜成像技术研究进展.  , 2017, 66(14): 144208. doi: 10.7498/aps.66.144208
    [11] 胡昌宝, 许吉, 丁剑平. 介质填充型二次柱面等离激元透镜的亚波长聚焦.  , 2016, 65(13): 137301. doi: 10.7498/aps.65.137301
    [12] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜.  , 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [13] 尹向宝, 刘永军, 张伶莉, 吕月兰, 霍泊帆, 孙伟民. 大变焦范围电调谐液晶变焦透镜的研究.  , 2015, 64(18): 184212. doi: 10.7498/aps.64.184212
    [14] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究.  , 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [15] 王博, 张建民, 路彦冬, 甘秀英, 殷保祥, 徐可为. fcc金属表面能的各向异性分析及表面偏析的预测.  , 2011, 60(1): 016601. doi: 10.7498/aps.60.016601
    [16] 尚英, 霍丙忠, 孟春宁, 袁景和. 并矢格林函数下的球形超透镜.  , 2010, 59(11): 8178-8183. doi: 10.7498/aps.59.8178
    [17] 刘虹遥, 吕强, 罗海陆, 文双春. 各向异性超常材料平板透镜的聚焦特性分析.  , 2010, 59(1): 256-263. doi: 10.7498/aps.59.256
    [18] 左言磊, 曾小明, 黄小军, 赵磊, 王逍, 周凯南, 张颖, 黄征. 大型短脉冲激光装置中脉冲前沿畸变效应的研究.  , 2009, 58(12): 8264-8270. doi: 10.7498/aps.58.8264
    [19] 朱言午, 石顺祥, 刘继芳, 孙艳玲. 用于THz波段脉冲空间整形的滤波透镜的电磁场分析.  , 2009, 58(2): 1042-1045. doi: 10.7498/aps.58.1042
    [20] 佘卫龙, 何穗荣, 汪河洲, 杨佩青, 余振新, 莫党. 光折变晶体中二波耦合光强依赖现象和各向异性热透镜效应.  , 1995, 44(1): 87-91. doi: 10.7498/aps.44.87
计量
  • 文章访问数:  6603
  • PDF下载量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-22
  • 修回日期:  2017-05-30
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map