搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

玻璃形成体系中的β弛豫

闻平

引用本文:
Citation:

玻璃形成体系中的β弛豫

闻平

β-relaxation in glass forming systems

Wen Ping
PDF
导出引用
  • 一定压强下对液体进行冷却,若避免晶化,则冷却中液体不可避免地转变为典型非晶态固体-玻璃.这种现象称为玻璃转变,是一种普遍存在的自然现象,涉及多体相互关联体系中众多基础理论问题.近几十年以来,玻璃转变问题的探索过程中,弛豫存在的普适性、其机理/物理图像及其对液体和玻璃性能认知的影响等一直是争论的热点.在梳理β弛豫研究进展的同时,本文尝试对未来β弛豫研究方向进行展望.
    As soon as crystallization is suspended at constant pressure, cooling liquids turn inevitably into rigid amorphous solids, i.e. glasses. The process is a universal phenomenon in nature, termed as glass transition involving many fundamental problems in many-body interaction system and material science. Among the decades research on the glass transition, the universality of β-relaxation, its mechanism and its effects on the understanding of liquids and glasses have been studied argumentatively. In this paper we review the research progress of β-relaxation and also try to point out the tendency of β-relaxation study in future.
      通信作者: 闻平, pwen@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号:50671118,51071170,11274353)资助的课题.
      Corresponding author: Wen Ping, pwen@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 50671118, 51071170, 11274353).
    [1]

    Iida T 1988 The Physical Properties of Liquid Metals (Oxford: Clarendon Press)

    [2]

    Dougherty R C, Noward L N 1998 J. Chem. Phys. 109 7379

    [3]

    Stillinger F H 1980 Science 209 451

    [4]

    Keutsch F N, Saykally R J 2001 PNAS 98 10533

    [5]

    Angell C A 2008 Science 319 582

    [6]

    Jäckle J 1986 Rep. Prog. Phys. 49 171

    [7]

    Dyre J C 2006 Rev. Mod. Phys. 78 953

    [8]

    Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164

    [9]

    Dyre J C, Olsen N B, Christensen T 1996 Phys. Rev. B 53 2171

    [10]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139

    [11]

    Barra J L T, Goetze W, Latz A 1989 J. Phys. Condens. Matter 1 7163

    [12]

    Boehmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201

    [13]

    Sastry S, Debenedett P G, Stillinger F H 1998 Nature 393 554

    [14]

    Berthier L, Biroli G 2011 Rev. Mod. Phys. 83 587

    [15]

    Martinez L M, Angell C A 2001 Nature 410 663

    [16]

    Donth E 2001 The Glass Transition (Berlin, Heidelberg: Springe-Verlag)

    [17]

    Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372

    [18]

    Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York, Dordrecht, Heidelberg, London: Springer)

    [19]

    Johari G P 1976 Ann. N.Y. Acad. Sci. 279 117

    [20]

    Tanaka H 2004 Phys. Rev. E 69 021502

    [21]

    Lunkenheimer P, Schneider U, Brand R, Loidl A 2000 Contemp. Phys. 41 15

    [22]

    Johari G P 2002 J. Non-Cryst. Solids 307-310 317

    [23]

    Tarjus G, Kivelson D 2000 J. Chem. Phys. 112 368

    [24]

    Ngai K L 1979 Comments Solid State Phys. 9 127

    [25]

    Ngai K L 2003 J. Phys. Condens. Matter 15 S1107

    [26]

    Schneider U, Brand R, Lunkenheimer P, Loidl A 2000 Phys. Rev. Lett. 84 5560

    [27]

    Ngai K L, Lunkenheimer P, Leoen C, Schneider U, Brand R, Loidl A 2001 J. Chem. Phys. 115 1405

    [28]

    Doeß A, Paluch M, Sillescu H, Hinze G 2002 Phys. Rev. Lett. 88 095701

    [29]

    Casalini R, Roland C M 2002 Phys. Rev. B 66 180201

    [30]

    Dixon P K, Wu L, Nagel S R, Williams B D, Carini J P 1990 Phys. Rev. Lett. 65 1108

    [31]

    Hensel-Bielowka S, Paluch M 2002 Phys. Rev. Lett. 89 025704

    [32]

    Wen P, Zhao D Q, Pan M X, et al. 2004 Appl. Phys. Lett. 84 2790

    [33]

    Zhao Z F, Wen P, Shek C H, Wang W H 2007 Phys. Rev. B 75 174201

    [34]

    Zhao Z F, Wen P, Wang W H 2006 Appl. Phys. Lett. 89 071920

    [35]

    Wen P, Zhao Z F, Pan M X, Wang W H 2010 Phys. Status Solidi A 207 2693

    [36]

    Yu H B, Wang W H, Bai H Y, Wu Y, Chen M W 2010 Phys. Rev. B 81 220201

    [37]

    Yu H B, Wang Z, Wang W H, Bai H Y 2012 J. Non-Cryst. Solids 358 869

    [38]

    Wang Z, Yu H B, Wen P, Bai H Y, Wang W H 2011 J. Phys.-Condens. Matter 23 142202

    [39]

    Wang W H 2011 J. Appl. Phys. 110 053521

    [40]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504

    [41]

    Yu H B, et al. 2014 National Sci. Rev. 0 1

    [42]

    Bartsch A, Raetzke K, Meyer A, Faupel F 2010 Phys. Rev. Lett. 104 195901

    [43]

    Yu H B, Samwer K, Wu Y, Wang W H 2012 Phys. Rev. Lett. 109 095508

    [44]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [45]

    Williams G, Watts D C 1971 Trans. Faraday Soc. 67 1971

    [46]

    Goldstein M 1975 J. Phys. Paris. Colloq. C2 C2

    [47]

    Johari G P 1983 Plastic Deformation of Amorphous and Semi-Crystalline Materials (France, Les Ullis: Les Edition de Physique)

    [48]

    Vogel M, Roessler E 2000 J. Phys. Chem. B 104 4285

    [49]

    Teixeira J, Bellissent-Funel M C, Chen S H, Dianoux A J 1985 Phys. Rev. A 31 1913

    [50]

    Ke H B, Wen P, Wang W H 2012 AIP Adv. 2 041404

  • [1]

    Iida T 1988 The Physical Properties of Liquid Metals (Oxford: Clarendon Press)

    [2]

    Dougherty R C, Noward L N 1998 J. Chem. Phys. 109 7379

    [3]

    Stillinger F H 1980 Science 209 451

    [4]

    Keutsch F N, Saykally R J 2001 PNAS 98 10533

    [5]

    Angell C A 2008 Science 319 582

    [6]

    Jäckle J 1986 Rep. Prog. Phys. 49 171

    [7]

    Dyre J C 2006 Rev. Mod. Phys. 78 953

    [8]

    Cohen M H, Turnbull D 1959 J. Chem. Phys. 31 1164

    [9]

    Dyre J C, Olsen N B, Christensen T 1996 Phys. Rev. B 53 2171

    [10]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139

    [11]

    Barra J L T, Goetze W, Latz A 1989 J. Phys. Condens. Matter 1 7163

    [12]

    Boehmer R, Ngai K L, Angell C A, Plazek D J 1993 J. Chem. Phys. 99 4201

    [13]

    Sastry S, Debenedett P G, Stillinger F H 1998 Nature 393 554

    [14]

    Berthier L, Biroli G 2011 Rev. Mod. Phys. 83 587

    [15]

    Martinez L M, Angell C A 2001 Nature 410 663

    [16]

    Donth E 2001 The Glass Transition (Berlin, Heidelberg: Springe-Verlag)

    [17]

    Johari G P, Goldstein M 1970 J. Chem. Phys. 53 2372

    [18]

    Ngai K L 2011 Relaxation and Diffusion in Complex Systems (New York, Dordrecht, Heidelberg, London: Springer)

    [19]

    Johari G P 1976 Ann. N.Y. Acad. Sci. 279 117

    [20]

    Tanaka H 2004 Phys. Rev. E 69 021502

    [21]

    Lunkenheimer P, Schneider U, Brand R, Loidl A 2000 Contemp. Phys. 41 15

    [22]

    Johari G P 2002 J. Non-Cryst. Solids 307-310 317

    [23]

    Tarjus G, Kivelson D 2000 J. Chem. Phys. 112 368

    [24]

    Ngai K L 1979 Comments Solid State Phys. 9 127

    [25]

    Ngai K L 2003 J. Phys. Condens. Matter 15 S1107

    [26]

    Schneider U, Brand R, Lunkenheimer P, Loidl A 2000 Phys. Rev. Lett. 84 5560

    [27]

    Ngai K L, Lunkenheimer P, Leoen C, Schneider U, Brand R, Loidl A 2001 J. Chem. Phys. 115 1405

    [28]

    Doeß A, Paluch M, Sillescu H, Hinze G 2002 Phys. Rev. Lett. 88 095701

    [29]

    Casalini R, Roland C M 2002 Phys. Rev. B 66 180201

    [30]

    Dixon P K, Wu L, Nagel S R, Williams B D, Carini J P 1990 Phys. Rev. Lett. 65 1108

    [31]

    Hensel-Bielowka S, Paluch M 2002 Phys. Rev. Lett. 89 025704

    [32]

    Wen P, Zhao D Q, Pan M X, et al. 2004 Appl. Phys. Lett. 84 2790

    [33]

    Zhao Z F, Wen P, Shek C H, Wang W H 2007 Phys. Rev. B 75 174201

    [34]

    Zhao Z F, Wen P, Wang W H 2006 Appl. Phys. Lett. 89 071920

    [35]

    Wen P, Zhao Z F, Pan M X, Wang W H 2010 Phys. Status Solidi A 207 2693

    [36]

    Yu H B, Wang W H, Bai H Y, Wu Y, Chen M W 2010 Phys. Rev. B 81 220201

    [37]

    Yu H B, Wang Z, Wang W H, Bai H Y 2012 J. Non-Cryst. Solids 358 869

    [38]

    Wang Z, Yu H B, Wen P, Bai H Y, Wang W H 2011 J. Phys.-Condens. Matter 23 142202

    [39]

    Wang W H 2011 J. Appl. Phys. 110 053521

    [40]

    Yu H B, Shen X, Wang Z, Gu L, Wang W H, Bai H Y 2012 Phys. Rev. Lett. 108 015504

    [41]

    Yu H B, et al. 2014 National Sci. Rev. 0 1

    [42]

    Bartsch A, Raetzke K, Meyer A, Faupel F 2010 Phys. Rev. Lett. 104 195901

    [43]

    Yu H B, Samwer K, Wu Y, Wang W H 2012 Phys. Rev. Lett. 109 095508

    [44]

    Debenedetti P G, Stillinger F H 2001 Nature 410 259

    [45]

    Williams G, Watts D C 1971 Trans. Faraday Soc. 67 1971

    [46]

    Goldstein M 1975 J. Phys. Paris. Colloq. C2 C2

    [47]

    Johari G P 1983 Plastic Deformation of Amorphous and Semi-Crystalline Materials (France, Les Ullis: Les Edition de Physique)

    [48]

    Vogel M, Roessler E 2000 J. Phys. Chem. B 104 4285

    [49]

    Teixeira J, Bellissent-Funel M C, Chen S H, Dianoux A J 1985 Phys. Rev. A 31 1913

    [50]

    Ke H B, Wen P, Wang W H 2012 AIP Adv. 2 041404

  • [1] 孟绍怡, 郝奇, 王兵, 段亚娟, 乔吉超. 冷却速率对La基非晶合金β弛豫行为和应力弛豫的影响.  , 2024, 73(3): 036101. doi: 10.7498/aps.73.20231417
    [2] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响.  , 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [3] 孙奕韬, 王超, 吕玉苗, 胡远超, 罗鹏, 刘明, 咸海杰, 赵德乾, 丁大伟, 孙保安, 潘明祥, 闻平, 白海洋, 柳延辉, 汪卫华. 非晶材料与物理近期研究进展.  , 2018, 67(12): 126101. doi: 10.7498/aps.67.20180681
    [4] 曹成成, 范珏雯, 朱力, 孟洋, 王寅岗. 预退火时间对Fe80.8B10P8Cu1.2非晶合金微结构及磁性能的影响.  , 2017, 66(16): 167501. doi: 10.7498/aps.66.167501
    [5] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫.  , 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [6] 陈威, 曹万强. 弛豫铁电体弥散相变的玻璃化特性研究.  , 2012, 61(9): 097701. doi: 10.7498/aps.61.097701
    [7] 程伟东, 孙民华, 李佳云, 王爱屏, 孙永丽, 刘 芳, 刘雄军. Cu60Zr30Ti10非晶合金弛豫和晶化过程的小角X射线散射研究.  , 2006, 55(12): 6673-6676. doi: 10.7498/aps.55.6673
    [8] 柳 义, 吴志方, 柳 林, 张 涛. 块体非晶合金Zr55Cu30Al10Ni5 结构弛豫的研究.  , 2005, 54(4): 1679-1682. doi: 10.7498/aps.54.1679
    [9] 柳 义, 柳 林, 王 俊, 赵 辉, 荣利霞, 董宝中. 用原位x射线小角散射研究块体非晶合金Zr55Cu30Al10 Ni5的结构弛豫.  , 2003, 52(9): 2219-2222. doi: 10.7498/aps.52.2219
    [10] 许峰, 黄永仁. 射频场照射下同核体系的弛豫.  , 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
    [11] 程忠阳, 姚熹, 张良莹. 弛豫型铁电体铌镁酸铅陶瓷的玻璃化行为研究.  , 1996, 45(6): 1026-1032. doi: 10.7498/aps.45.1026
    [12] 胡征, 范以宁, 陈懿, 夏元复. Fe35Ni15B26纳米金属玻璃的表面状态、结构弛豫及晶化过程的研究.  , 1993, 42(7): 1188-1193. doi: 10.7498/aps.42.1188
    [13] 王国樑, 戴培英. 时间和空间无序对玻璃超声弛豫的影响——红外发散响应理论的推广.  , 1990, 39(7): 95-100. doi: 10.7498/aps.39.95
    [14] 刘砚章, 范希庆. KCl:OH中结构弛豫的红外发散响应.  , 1990, 39(3): 424-428. doi: 10.7498/aps.39.424
    [15] 丁屹, 俞文海, 吴昆裕. 快离子导体玻璃滞弹性弛豫的红外发散响应.  , 1989, 38(1): 134-139. doi: 10.7498/aps.38.134
    [16] 刘文, 黄胜涛, 唐承欢, 徐国枢. 天然和人工时效Cu55Zr45金属玻璃结构弛豫的EXAFS研究.  , 1987, 36(12): 1551-1556. doi: 10.7498/aps.36.1551
    [17] 范希庆, 王国樑, 刘福绥. 玻璃中结构弛豫的红外发散响应.  , 1986, 35(7): 896-904. doi: 10.7498/aps.35.896
    [18] 李景德. 热电弛豫效应.  , 1984, 33(11): 1563-1568. doi: 10.7498/aps.33.1563
    [19] 赵继良, 罗远苏, 黄胜涛. 钴镍铁基金属玻璃结构弛豫的X射线研究.  , 1983, 32(1): 15-24. doi: 10.7498/aps.32.15
    [20] 马本堃. 自旋-晶格弛豫.  , 1965, 21(7): 1419-1436. doi: 10.7498/aps.21.1419
计量
  • 文章访问数:  7297
  • PDF下载量:  488
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-02
  • 修回日期:  2017-08-09
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map