搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超高强块体非晶合金的研究进展

魏新权 毕甲紫 李然

引用本文:
Citation:

超高强块体非晶合金的研究进展

魏新权, 毕甲紫, 李然

Development of ultrahigh strength bulk metallic glasses

Wei Xin-Quan, Bi Jia-Zi, Li Ran
PDF
导出引用
  • 研制具有极限力学性能的金属材料一直是材料研究人员的梦想.超高强块体非晶合金是一类具有极高断裂强度(≥ 4 GPa)、高热稳定性(玻璃化转变温度通常高于800 K)和高硬度(通常高于12 GPa)的新型先进金属材料,其代表合金材料Co-Ta-B的断裂强度可达6 GPa,为目前公开报道的块体金属材料的强度记录值.本文系统地综述了该类超高强度块体非晶合金的组分、热学性能、弹性模量及力学性能,阐述了该类材料的研发历程;以弹性模量为联系桥梁,阐明了该类超高强块体非晶合金材料各物理性能的关联性,并揭示了其高强度、高硬度的价键本质.相关内容对于材料工作者了解该类超高强度金属材料的性能和特点,并推进该类材料在航空航天先进制造、超持久部件、机械加工等领域的实际应用有着重要意义.
    It is always desirable to develop bulk metal materials with extremely mechanical properties. Ultrahigh strength bulk metallic glass (BMG) is a kind of advanced metallic material with extremely high strength (above 4 GPa), high thermal stability (the glass transition temperature: normally above 800 K), and high hardness (normally above 12 GPa). A typical system of the ultrahigh strength BMG is Co-Ta-B alloy with a fracture strength of above 6 GPa, which is the highest value in the fracture strengths for all kinds of bulk metallic materials (including crystalline and amorphous ones) that we have known so far. In this paper, the compositions, thermal properties, elastic constants, and mechanical properties for all of the reported ultrahigh strength BMGs are summarized. The research progress of these BMGs is also introduced. The correlations among the characteristic temperature, elastic constants, hardness and mechanical properties are built, and the natures of chemical bonding for the ultrahigh strength and high hardness of these BMGs are revealed. The results relating to the structure and physical properties of this kind of ultrahigh strength BMG are significant for potential applications in advanced manufacture, super-durable components and machining.
      通信作者: 李然, liran@buaa.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号:51131002)、霍英东教育基金会青年教师基金应用研究课题(批准号:142008)和北京市自然科学基金面上项目(批准号:2172034)资助的课题.
      Corresponding author: Li Ran, liran@buaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51131002), the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (Grant No. 142008), and the Beijing Natural Science Foundation, China (Grant No. 2172034).
    [1]

    Ashby M F 2005 Materials Selection in Mechanical Design (Third Edition) (Butterworth-Heinemann) pp1-9

    [2]

    Lu K 2010 Science 328 319

    [3]

    Morris Jr J W, Guo Z, Krenn C R, Kim Y H 2001 ISIJ International 41 599

    [4]

    Li Y, Raabe D, Herbig M, Choi P P, Goto S, Kostka A, Yarita H 2014 Phys. Rev. Lett. 113 106104

    [5]

    Li Y J, Choi P, Goto S Borchers C, Raabe D, Kirchheim R 2012 Acta Mater. 60 4005

    [6]

    Ashby M F, Greer A L 2006 Scripta Mater. 54 321

    [7]

    Wang W H 2005 J. Non-Cryst. Solids 351 1481

    [8]

    Inoue A 2000 Acta Mater 48 279

    [9]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [10]

    Chen H S 1974 Acta Metall. 22 1505

    [11]

    Drehman A J, Greer A L, Turnbull D 1982 Appl. Phys. Lett. 41 716

    [12]

    Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 965

    [13]

    Inoue A, Zhang T, Masumoto T 1990 Mater. Trans. JIM 31 425

    [14]

    Inoue A, Kato A, Zhang T 1991 Mater. Trans. JIM 32 609

    [15]

    Zhang T, Inoue A, Masumoto T 1991 Mater. Trans. JIM 32 1005

    [16]

    Inoue A, Zhang T 1996 Mater. Trans. JIM 37 185

    [17]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342

    [18]

    Inoue A Shinohara1 Y, Gook J S 1995 Mater. Trans. JIM 36 1427

    [19]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nature Mater. 2 661

    [20]

    Chang C T, Shen B L, Inoue A 2006 Appl. Phys. Lett. 88 011901

    [21]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2004 Acta Mater. 52 1631

    [22]

    Zhang T, Yang Q, Ji Y F, Li R, Pang S J, Wang J F, Xu T 2011 Chin. Sci. Bull. 56 3972

    [23]

    Inoue A, Shen B L, Chang C T 2006 Intermetallics 14 936

    [24]

    Wang J Li R, Hua N B, Zhang T 2011 J. Mater. Res. 26 2072

    [25]

    Dun T T, Liu H S, Shen B L 2012 J. Non-Cryst. Solids 358 3060

    [26]

    Wang J F, Wang L G, Guan S K, Zhu S J, Li R, Zhang T 2014 J. Alloys Compod. 617 7

    [27]

    Wang J F, Li R, Xiao R J, Xu T, Li R, Liu Z Q, Huang L, Hua N B, Li G, Li Y C, Zhang T 2011 Appl. Phys. Lett. 99 151911

    [28]

    Man Q K, Sun H J, Dong Y Q, Shen B L, Kimura H, Makino A, Inoue A 2010 Intermetallics 18 1876

    [29]

    Dong Y Q, Wang A D, Man Q K, Shen B L 2012 Intermetallics 23 63

    [30]

    Shen B L, Inoue A, Chang C T 2004 Appl. Phys. Lett. 85 4911

    [31]

    Lin C Y, Li M C, Chin T S 2007 J. Phys. D: Appl. Phys. 40 310

    [32]

    Yao J H, Wang J Q, Li Y 2008 Appl. Phys. Lett 92 251906

    [33]

    Yao J H, Yang H, Zhang J, Wang J Q, Li Y 2008 J. Mater. Res. 23 392

    [34]

    Chang Z Y, Huang X M, Chen L Y, Ge M Y, Jiang Q K, Nie X P, Jiang J Z 2009 Mater. Sci. Engineer. A 517 246

    [35]

    Park J M, Wang G, Li R, Mattern N, Eckert J, Kim D H 2010 Appl. Phys. Lett. 96 031905

    [36]

    Gu X J, Joseph P S, Shiflet G J 2007 J. Mater. Res. 22 344

    [37]

    Wei X Q 2017 M. S. Dissertation (Beijing: Beihang University) (in Chinese) [魏新权 2017 硕士学位论文 (北京: 北京航空航天大学)]

    [38]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [39]

    Liu Z Q, Wang R F, Qu R T, Zhang Z F 2014 J. Appl. Phys. 115 203513

    [40]

    Chen X Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275

    [41]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385

    [42]

    Lewandowski J J, Wang W H, Greer A L 2005 Phil. Mag. Lett. 85 77

    [43]

    Egami T, Poon S J, Zhang Z, Keppens V 2007 Phys. Rev. B 76 024203

    [44]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 95501

  • [1]

    Ashby M F 2005 Materials Selection in Mechanical Design (Third Edition) (Butterworth-Heinemann) pp1-9

    [2]

    Lu K 2010 Science 328 319

    [3]

    Morris Jr J W, Guo Z, Krenn C R, Kim Y H 2001 ISIJ International 41 599

    [4]

    Li Y, Raabe D, Herbig M, Choi P P, Goto S, Kostka A, Yarita H 2014 Phys. Rev. Lett. 113 106104

    [5]

    Li Y J, Choi P, Goto S Borchers C, Raabe D, Kirchheim R 2012 Acta Mater. 60 4005

    [6]

    Ashby M F, Greer A L 2006 Scripta Mater. 54 321

    [7]

    Wang W H 2005 J. Non-Cryst. Solids 351 1481

    [8]

    Inoue A 2000 Acta Mater 48 279

    [9]

    Wang W H 2012 Prog. Mater. Sci. 57 487

    [10]

    Chen H S 1974 Acta Metall. 22 1505

    [11]

    Drehman A J, Greer A L, Turnbull D 1982 Appl. Phys. Lett. 41 716

    [12]

    Inoue A, Zhang T, Masumoto T 1989 Mater. Trans. JIM 30 965

    [13]

    Inoue A, Zhang T, Masumoto T 1990 Mater. Trans. JIM 31 425

    [14]

    Inoue A, Kato A, Zhang T 1991 Mater. Trans. JIM 32 609

    [15]

    Zhang T, Inoue A, Masumoto T 1991 Mater. Trans. JIM 32 1005

    [16]

    Inoue A, Zhang T 1996 Mater. Trans. JIM 37 185

    [17]

    Peker A, Johnson W L 1993 Appl. Phys. Lett. 63 2342

    [18]

    Inoue A Shinohara1 Y, Gook J S 1995 Mater. Trans. JIM 36 1427

    [19]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2003 Nature Mater. 2 661

    [20]

    Chang C T, Shen B L, Inoue A 2006 Appl. Phys. Lett. 88 011901

    [21]

    Inoue A, Shen B L, Koshiba H, Kato H, Yavari A R 2004 Acta Mater. 52 1631

    [22]

    Zhang T, Yang Q, Ji Y F, Li R, Pang S J, Wang J F, Xu T 2011 Chin. Sci. Bull. 56 3972

    [23]

    Inoue A, Shen B L, Chang C T 2006 Intermetallics 14 936

    [24]

    Wang J Li R, Hua N B, Zhang T 2011 J. Mater. Res. 26 2072

    [25]

    Dun T T, Liu H S, Shen B L 2012 J. Non-Cryst. Solids 358 3060

    [26]

    Wang J F, Wang L G, Guan S K, Zhu S J, Li R, Zhang T 2014 J. Alloys Compod. 617 7

    [27]

    Wang J F, Li R, Xiao R J, Xu T, Li R, Liu Z Q, Huang L, Hua N B, Li G, Li Y C, Zhang T 2011 Appl. Phys. Lett. 99 151911

    [28]

    Man Q K, Sun H J, Dong Y Q, Shen B L, Kimura H, Makino A, Inoue A 2010 Intermetallics 18 1876

    [29]

    Dong Y Q, Wang A D, Man Q K, Shen B L 2012 Intermetallics 23 63

    [30]

    Shen B L, Inoue A, Chang C T 2004 Appl. Phys. Lett. 85 4911

    [31]

    Lin C Y, Li M C, Chin T S 2007 J. Phys. D: Appl. Phys. 40 310

    [32]

    Yao J H, Wang J Q, Li Y 2008 Appl. Phys. Lett 92 251906

    [33]

    Yao J H, Yang H, Zhang J, Wang J Q, Li Y 2008 J. Mater. Res. 23 392

    [34]

    Chang Z Y, Huang X M, Chen L Y, Ge M Y, Jiang Q K, Nie X P, Jiang J Z 2009 Mater. Sci. Engineer. A 517 246

    [35]

    Park J M, Wang G, Li R, Mattern N, Eckert J, Kim D H 2010 Appl. Phys. Lett. 96 031905

    [36]

    Gu X J, Joseph P S, Shiflet G J 2007 J. Mater. Res. 22 344

    [37]

    Wei X Q 2017 M. S. Dissertation (Beijing: Beihang University) (in Chinese) [魏新权 2017 硕士学位论文 (北京: 北京航空航天大学)]

    [38]

    Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067

    [39]

    Liu Z Q, Wang R F, Qu R T, Zhang Z F 2014 J. Appl. Phys. 115 203513

    [40]

    Chen X Q, Niu H, Li D, Li Y 2011 Intermetallics 19 1275

    [41]

    Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H 2007 Science 315 1385

    [42]

    Lewandowski J J, Wang W H, Greer A L 2005 Phil. Mag. Lett. 85 77

    [43]

    Egami T, Poon S J, Zhang Z, Keppens V 2007 Phys. Rev. B 76 024203

    [44]

    Johnson W L, Samwer K 2005 Phys. Rev. Lett. 95 95501

  • [1] 王龙, 汪刘应, 刘顾, 唐修检, 葛超群, 王滨, 许可俊, 王新军. 基于FTO/Ag/FTO构型的高透明红外隐身薄膜设计.  , 2023, 72(24): 244202. doi: 10.7498/aps.72.20231084
    [2] 邱克鹏, 骆越, 张卫红. 新型手性电磁超材料非对称传输性能设计分析.  , 2020, 69(21): 214101. doi: 10.7498/aps.69.20200728
    [3] 冯涛, Horst Hahn, Herbert Gleiter. 纳米结构非晶合金材料研究进展.  , 2017, 66(17): 176110. doi: 10.7498/aps.66.176110
    [4] 吴渊, 宋温丽, 周捷, 曹迪, 王辉, 刘雄军, 吕昭平. 块体非晶合金的韧塑化.  , 2017, 66(17): 176111. doi: 10.7498/aps.66.176111
    [5] 包括, 马帅领, 徐春红, 崔田. 过渡金属轻元素化合物高硬度多功能材料的设计.  , 2017, 66(3): 036104. doi: 10.7498/aps.66.036104
    [6] 张源, 高雁军, 胡诚, 谭兴毅, 邱达, 张婷婷, 朱永丹, 李美亚. 磁铁/压电双晶片复合材料磁电耦合性能的优化设计.  , 2016, 65(16): 167501. doi: 10.7498/aps.65.167501
    [7] 许文祥, 孙洪广, 陈文, 陈惠苏. 软物质系颗粒材料组成、微结构与传输性能之间关联建模综述.  , 2016, 65(17): 178101. doi: 10.7498/aps.65.178101
    [8] 姜太龙, 喻寅, 宦强, 李永强, 贺红亮. 设计脆性材料的冲击塑性.  , 2015, 64(18): 188301. doi: 10.7498/aps.64.188301
    [9] 黄大庆, 康飞宇, 周卓辉, 刘翔, 程红飞. 微波低通高阻复合材料构件的设计与性能验证.  , 2015, 64(18): 188401. doi: 10.7498/aps.64.188401
    [10] 廖光开, 龙志林, 许福, 刘为, 张志洋, 杨妙. 基于分数阶流变模型的铁基块体非晶合金黏弹性行为研究.  , 2015, 64(13): 136101. doi: 10.7498/aps.64.136101
    [11] 胡勇, 闫红红, 林 涛, 李金富, 周尧和. 退火态Zr55Al10Ni5Cu30块体非晶合金在轧制过程中的自由体积演化.  , 2012, 61(8): 087102. doi: 10.7498/aps.61.087102
    [12] 彭建, 龙志林, 危洪清, 李乡安, 张志纯. 铁基块体非晶合金在纳米压痕过程中的蠕变行为研究.  , 2009, 58(6): 4059-4065. doi: 10.7498/aps.58.4059
    [13] 危洪清, 李乡安, 龙志林, 彭建, 张平, 张志纯. 块体非晶合金的黏度与玻璃形成能力的关系.  , 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [14] 叶祥熙, 明辰, 胡蕴成, 宁西京. 体材料结晶能力的理论预测.  , 2009, 58(5): 3293-3301. doi: 10.7498/aps.58.3293
    [15] 江建军, 袁 林, 邓联文, 何华辉. 磁性纳米颗粒膜的微磁学模拟.  , 2006, 55(6): 3043-3048. doi: 10.7498/aps.55.3043
    [16] 王 清, 羌建兵, 王英敏, 夏俊海, 林 哲, 张新房, 董 闯. Cu-Zr-Ti系Cu基块体非晶合金的形成和成分优化.  , 2006, 55(1): 378-385. doi: 10.7498/aps.55.378
    [17] 秦秀娟, 邵光杰, 刘日平, 王文魁. ZnO纳米块体材料的制备及其性能的研究.  , 2005, 54(5): 2409-2413. doi: 10.7498/aps.54.2409
    [18] 柳 义, 吴志方, 柳 林, 张 涛. 块体非晶合金Zr55Cu30Al10Ni5 结构弛豫的研究.  , 2005, 54(4): 1679-1682. doi: 10.7498/aps.54.1679
    [19] 柳 义, 柳 林, 王 俊, 赵 辉, 荣利霞, 董宝中. 用原位x射线小角散射研究块体非晶合金Zr55Cu30Al10 Ni5的结构弛豫.  , 2003, 52(9): 2219-2222. doi: 10.7498/aps.52.2219
    [20] 王荫君, 唐谦, 杨克敏, 蔡衡, 沈建祥, 张绪信. 光盘存储材料非晶GdTbFe膜的性能.  , 1987, 36(6): 705-711. doi: 10.7498/aps.36.705
计量
  • 文章访问数:  7264
  • PDF下载量:  549
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-08
  • 修回日期:  2017-07-16
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map