搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属玻璃液体中的强脆转变现象

胡丽娜 赵茜 张春芝

引用本文:
Citation:

金属玻璃液体中的强脆转变现象

胡丽娜, 赵茜, 张春芝

Fragile-to-strong transition in metallic glass-forming liquids

Hu Li-Na, Zhao Xi, Zhang Chun-Zhi
PDF
导出引用
  • 强脆转变是玻璃形成液体在从低温到高温升温过程中由强性液体转变为脆性液体的现象,反之从高温到低温冷却过程即为脆强转变.由于其意味着液体的结构发生了某种快速、非连续的变化,强脆转变现象成为异常动力学的典型代表.自1999年《Nature》杂志首次报道了水的强-脆转变现象之后,液体的强脆转变现象就作为凝聚态物理和材料科学领域中的前沿和热点问题被广泛关注.越来越多的研究表明,强脆转变现象在金属玻璃形成液体中普遍存在.为阐明金属玻璃强-脆转变现象对于深入理解玻璃转变本质、探讨液固遗传微观结构特征、揭示晶化过程相互竞争规律、提高玻璃形成能力、促进金属玻璃制备和处理工艺标准化等方面的重要意义,综合评述了强脆转变现象在金属玻璃形成液体中的普遍性、特殊性、定量表征、热力学表现以及结构起源等研究领域的最新进展,并指出了该领域今后的发展方向.
    It has been observed that many glass-forming liquids are transformed from fragile to strong liquids in a supercooled region upon cooling. This is the so-called fragile-to-strong (F-S) transition. Since its discovery in water, the F-S transition, as a frontier problem, as well as a hot issue, in condensed matter physics and material science, has aroused the considerable interest of researchers. It has been generally accepted that the F-S transition might be a universal dynamic behavior of metallic glass-forming liquid (MGFL). Studying the F-S transition is important not only for better understanding the nature of glass transition, uncovering the microstructural inheritance during the liquid-solid transformation, clarifying the structural competition during crystallization, improving the stability of MGs, but also for promoting the standardization during the production and treatment technology of MGs. In this paper, the general and special features of the F-S transition for bulk and marginal MGFLs are studied and described in terms of a physical model. A characteristic parameter f is introduced to quantify the F-S transition. With two relaxation regimes, on the basis of Mauro-Yuanzheng-Ellison-Gupta-Allan model, we propose a generalized viscosity model for capturing the liquids with the F-S transition. Using this model, we calculate the F-S transition temperature for metallic glass. From the calculation results, the F-S transition might occur around (1.36±0.03) Tg. By using the hyperquenching annealing-calorimetric approach, we find that the anomalous crystallization behavior occurs in both LaAlNi and CuZrAl glass ribbons. This phenomenon implies the existence of a thermodynamic F-S transition, which could be used as an alternative method of detecting the F-S transition in MGFLs. To date, the origin of the F-S transition is far from understanding. We find that the F-S transition in CuZr(Al) GFLs is attributed to the competition among the MRO clusters composed of different locally ordering configurations. By comparing the parameter f with the parameter r that characterizes the competition between the α and the slow β relaxations in 19 MGFLs, we find that the slow β relaxation plays a dominant role in the F-S transition and the extent of the F-S transition is mainly determined by the degree of the comparability in structure units between the α and the slow β relaxations. The existence of the liquid-liquid phase transition might also be the root of the F-S transition. The tendency of investigation of the F-S transition is also evaluated.
      通信作者: 胡丽娜, hulina0850@sina.com
    • 基金项目: 国家科技重大专项(批准号:2016YFB0300501)和国家自然科学基金(批准号:51571131,51501104)资助的课题.
      Corresponding author: Hu Li-Na, hulina0850@sina.com
    • Funds: Project supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2016YFB0300501) and the National Natural Science Foundation of China (Grant Nos. 51571131, 51501104).
    [1]

    Angell C A 1985 J. Non-Cryst. Solids 73 1

    [2]

    Angell C A 1995 Science 267 1924

    [3]

    Angell C A 1988 J. Non-Cryst. Solids 102 205

    [4]

    Debenedetti P G, Stillinger F H, Truskett T M, Roberts C J 1999 J. Phys. Chem. B 103 7390

    [5]

    Novikov V N, Sokolov A P 2004 Nature 431 961

    [6]

    Hu L N, Bian X F, Wang W M, Zhang J Y, Jia Y B 2004 Acta Mater. 52 4773

    [7]

    Ito K, Moynihan C T, Angell C A 1999 Nature 398 492

    [8]

    Agladze N I, Sievers A J 1998 Phys. Rev. Lett. 80 4209

    [9]

    Speedy R J, Debenedetti P G, Smith R S, Huang C, Kay B D 1996 J. Chem. Phys. 105 240

    [10]

    Barrat J L, Badro J, Gillet P 1997 Mol. Simul. 20 17

    [11]

    Saika-Voivod I, Poole P H, Sciortino F 2001 Nature 412 514

    [12]

    van Beest B W, Kramer G J, van Santen R A 1990 Phys. Rev. Lett. 64 1955

    [13]

    Hemmati M, Moynihan C T, Angell C A 2001 J. Chem. Phys. 115 6663

    [14]

    Way C, Wadhwa P, Busch R 2007 Acta Mater. 55 2977

    [15]

    Li J J Z, Rhim W K, Kim C P, Samwer K, Johnson W L 2011 Acta Mater. 59 2166

    [16]

    Zhang C Z, Hu L N, Yue Y Z, Mauro J C 2010 J. Chem. Phys. 133 014508

    [17]

    Zhang C Z, Hu L N, Bian X F, Yue Y Z 2010 Chin. Phys. Lett. 27 116401

    [18]

    Zhou C, Hu L N, Sun Q J, Zheng H J, Zhang C Z, Yue Y Z 2015 J. Chem. Phys. 142 064508

    [19]

    Georgarakis K, Louzguine-Luzgin D V, Antonowicz J, Vaughan G, Yavari A R, Egami T, Inoue A 2011 Acta Mater. 59 708

    [20]

    Guo Y F, Yavari A R, Zhang T 2012 J. Alloys Compd. 536 S91

    [21]

    Wang D, Peng H Y, Xu X Y, Chen B L, Wu C L, Sun M H 2010 Chin. Phys. Lett. 27 036401

    [22]

    Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901

    [23]

    Mauro N A, Blodgett M, Johnson M L, Vogt A J, Kelton K F 2014 Nat. Commun. 5 4616

    [24]

    Georgarakis K, Hennet L, Evangelakis G A, Antonowicz J, Bokas G B, Honkimaki V, Bytchkov A, Chen M W, Yavari A R 2015 Acta Mater. 87 174

    [25]

    Orava J, Weber H, Kaban I, Greer A L 2016 J. Chem. Phys. 144 194503

    [26]

    Wei S, Lucas P, Angell C A 2015 J. Appl. Phys. 118 034903

    [27]

    Xu L M, Ehrenberg I, Buldyrev S V, Stanley H E 2006 J. Phys.: Condens. Matter 18 S2239

    [28]

    Xu Li M, Kumar P, Buldyrev S V, Chen S H, Poole P H, Sciortino F, Stanley H E 2005 Proc. Natl. Acad. Sci. USA 102 16558

    [29]

    Bertolazzo A A, Barbosa M C 2014 Physica A: Statist. Mech. Appl. 404 150

    [30]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139

    [31]

    Mauro J C, Yue Y, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. USA 106 19780

    [32]

    Gupta P K, Mauro J C 2009 J. Chem. Phys. 130 094503

    [33]

    Mauro J C, Gupta P K, Loucks R J 2009 J. Chem. Phys. 130 234503

    [34]

    Mauro J C, Loucks Roger J 2008 Phys. Rev. E 78 021502

    [35]

    Sun Q J, Zhou C, Yue Y Z, Hu L N 2014 J. Phys. Chem. Lett. 5 1170

    [36]

    Hu L N, Zhou C, Zhang C Z, Yue Y Z 2013 J. Chem. Phys. 138 174508

    [37]

    Mallamace F, Branca C, Corsaro C, Leone N, Spooren J, Chen S H, Stanley H E 2010 Proc. Natl. Acad. Sci. USA 107 22457

    [38]

    Starr F W, Angell C A, Stanley H E 2003 Physica A: Statist. Mech. Appl. 323 51

    [39]

    Hu L N, Yue Y Z 2009 J. Phys. Chem. C 113 15001

    [40]

    Hu L N, Yue Y Z 2008 J. Phys. Chem. B 112 9053

    [41]

    Hu L N, Zhang C Z, Yue Y Z 2010 Appl. Phys. Lett. 96 221908

    [42]

    Johari G P 2003 J. Phys. Chem. B 107 9063

    [43]

    Hu L N, Yue Y Z, Zhang C Z 2011 Appl. Phys. Lett. 98 081904

    [44]

    Yang X N, Zhou C, Sun Q J, Hu L N, Mauro J C, Wang C Z, Yue Y Z 2014 J. Phys. Chem. B 118 10258

    [45]

    Zheng H J, L Y M, Sun Q J, Hu L N, Yang X N, Yue Y Z 2016 Sci. Bull. 61 706

    [46]

    Na J H, Sohn S W, Kim W T, Kim D H 2007 Scripta Mater. 57 225

    [47]

    Lan S, Ren Y, Wei X Y, Wang B, Gilbert E P, Shibayama T, Watanabe S, Ohnuma M, Wang X L 2017 Nat. Commun. 8 14679

    [48]

    Kchemann S, Samwer K 2016 Acta Mater. 104 119

    [49]

    Jagla E A 1999 J. Phys.: Condens. Matter 11 10251

    [50]

    Tanaka H 2003 J. Phys.: Condens. Matter 15 L703

    [51]

    Liu L, Chen S H, Faraone A, Yen C W, Mou C Y 2005 Phys. Rev. Lett. 95 117802

    [52]

    Sheng H W, Liu H Z, Cheng Y Q, Wen J, Lee P L, Luo W K, Shastri S D, Ma E 2007 Nat. Mater. 6 192

    [53]

    Mishima O, Calvert L D, Whalley E 1985 Nature 314 76

    [54]

    McMillan P F 2004 J. Mater. Chem. 14 1506

    [55]

    Greaves G N, Wilding M C, Fearn S, Langstaff D, Kargl F, Cox S, van Q V, Majérus O, Benmore C J, Weber R 2008 Science 322 566

    [56]

    de Marzio M, Camisasca G, Rovere M, Gallo P 2017 J. Chem. Phys. 146 084502

    [57]

    de Marzio M, Camisasca G, Conde M M, Rovere M, Gallo P 2017 J. Chem. Phys. 146 084505

    [58]

    Li G, Wang Y Y, Liaw P K, Li Y C, Liu R P 2012 Phys. Rev. Lett. 109 125501

    [59]

    Cadien A, Hu Q Y, Meng Y, Cheng Y Q, Chen M W, Shu J F, Mao H K, Sheng H W 2013 Phys. Rev. Lett. 110 125503

    [60]

    Xu W, Sandor M T, Yu Y, Ke H B, Zhang H P, Li M Z, Wang W H, Liu L, Wu Y 2015 Nat. Commun. 6 7696

    [61]

    Wei S, Yang F, Bednarcik J, Kaban I, Shuleshova O, Meyer A, Busch R 2013 Nat. Commun. 4 2083

    [62]

    Zhou C, Hu L N, Sun Q J, Qin J Y, Bian X F, Yue Y Z 2013 Appl. Phys. Lett. 103 171904

    [63]

    Wang C W, Hu L N, Wei C, Tong X, Zhou C, Sun Q J, Hui X D, Yue Y Z 2014 J. Chem. Phys. 141 164507

    [64]

    Jakse N, Pasturel A 2008 J. Chem. Phys. 129 104503

    [65]

    Cajahuaringa S, de Koning M, Antonelli A 2013 J. Chem. Phys. 139 224504

    [66]

    Hedström J, Swenson J, Bergman R, Jansson H, Kittaka S 2007 Eur. Phys. J. Special Topics 141 53

    [67]

    Monasterio M, Jansson H, Gaitero J J, Dolado J S, Cerveny S 2013 J. Chem. Phys. 139 164714

    [68]

    Sun Q J, Hu L N, Zhou C, Zheng H J, Yue Y Z 2015 J. Chem. Phys. 143 164504

    [69]

    Orava J, Hewak D W, Greer A L 2015 Adv. Funct. Mater. 25 4851

  • [1]

    Angell C A 1985 J. Non-Cryst. Solids 73 1

    [2]

    Angell C A 1995 Science 267 1924

    [3]

    Angell C A 1988 J. Non-Cryst. Solids 102 205

    [4]

    Debenedetti P G, Stillinger F H, Truskett T M, Roberts C J 1999 J. Phys. Chem. B 103 7390

    [5]

    Novikov V N, Sokolov A P 2004 Nature 431 961

    [6]

    Hu L N, Bian X F, Wang W M, Zhang J Y, Jia Y B 2004 Acta Mater. 52 4773

    [7]

    Ito K, Moynihan C T, Angell C A 1999 Nature 398 492

    [8]

    Agladze N I, Sievers A J 1998 Phys. Rev. Lett. 80 4209

    [9]

    Speedy R J, Debenedetti P G, Smith R S, Huang C, Kay B D 1996 J. Chem. Phys. 105 240

    [10]

    Barrat J L, Badro J, Gillet P 1997 Mol. Simul. 20 17

    [11]

    Saika-Voivod I, Poole P H, Sciortino F 2001 Nature 412 514

    [12]

    van Beest B W, Kramer G J, van Santen R A 1990 Phys. Rev. Lett. 64 1955

    [13]

    Hemmati M, Moynihan C T, Angell C A 2001 J. Chem. Phys. 115 6663

    [14]

    Way C, Wadhwa P, Busch R 2007 Acta Mater. 55 2977

    [15]

    Li J J Z, Rhim W K, Kim C P, Samwer K, Johnson W L 2011 Acta Mater. 59 2166

    [16]

    Zhang C Z, Hu L N, Yue Y Z, Mauro J C 2010 J. Chem. Phys. 133 014508

    [17]

    Zhang C Z, Hu L N, Bian X F, Yue Y Z 2010 Chin. Phys. Lett. 27 116401

    [18]

    Zhou C, Hu L N, Sun Q J, Zheng H J, Zhang C Z, Yue Y Z 2015 J. Chem. Phys. 142 064508

    [19]

    Georgarakis K, Louzguine-Luzgin D V, Antonowicz J, Vaughan G, Yavari A R, Egami T, Inoue A 2011 Acta Mater. 59 708

    [20]

    Guo Y F, Yavari A R, Zhang T 2012 J. Alloys Compd. 536 S91

    [21]

    Wang D, Peng H Y, Xu X Y, Chen B L, Wu C L, Sun M H 2010 Chin. Phys. Lett. 27 036401

    [22]

    Bendert J C, Gangopadhyay A K, Mauro N A, Kelton K F 2012 Phys. Rev. Lett. 109 185901

    [23]

    Mauro N A, Blodgett M, Johnson M L, Vogt A J, Kelton K F 2014 Nat. Commun. 5 4616

    [24]

    Georgarakis K, Hennet L, Evangelakis G A, Antonowicz J, Bokas G B, Honkimaki V, Bytchkov A, Chen M W, Yavari A R 2015 Acta Mater. 87 174

    [25]

    Orava J, Weber H, Kaban I, Greer A L 2016 J. Chem. Phys. 144 194503

    [26]

    Wei S, Lucas P, Angell C A 2015 J. Appl. Phys. 118 034903

    [27]

    Xu L M, Ehrenberg I, Buldyrev S V, Stanley H E 2006 J. Phys.: Condens. Matter 18 S2239

    [28]

    Xu Li M, Kumar P, Buldyrev S V, Chen S H, Poole P H, Sciortino F, Stanley H E 2005 Proc. Natl. Acad. Sci. USA 102 16558

    [29]

    Bertolazzo A A, Barbosa M C 2014 Physica A: Statist. Mech. Appl. 404 150

    [30]

    Adam G, Gibbs J H 1965 J. Chem. Phys. 43 139

    [31]

    Mauro J C, Yue Y, Ellison A J, Gupta P K, Allan D C 2009 Proc. Natl. Acad. Sci. USA 106 19780

    [32]

    Gupta P K, Mauro J C 2009 J. Chem. Phys. 130 094503

    [33]

    Mauro J C, Gupta P K, Loucks R J 2009 J. Chem. Phys. 130 234503

    [34]

    Mauro J C, Loucks Roger J 2008 Phys. Rev. E 78 021502

    [35]

    Sun Q J, Zhou C, Yue Y Z, Hu L N 2014 J. Phys. Chem. Lett. 5 1170

    [36]

    Hu L N, Zhou C, Zhang C Z, Yue Y Z 2013 J. Chem. Phys. 138 174508

    [37]

    Mallamace F, Branca C, Corsaro C, Leone N, Spooren J, Chen S H, Stanley H E 2010 Proc. Natl. Acad. Sci. USA 107 22457

    [38]

    Starr F W, Angell C A, Stanley H E 2003 Physica A: Statist. Mech. Appl. 323 51

    [39]

    Hu L N, Yue Y Z 2009 J. Phys. Chem. C 113 15001

    [40]

    Hu L N, Yue Y Z 2008 J. Phys. Chem. B 112 9053

    [41]

    Hu L N, Zhang C Z, Yue Y Z 2010 Appl. Phys. Lett. 96 221908

    [42]

    Johari G P 2003 J. Phys. Chem. B 107 9063

    [43]

    Hu L N, Yue Y Z, Zhang C Z 2011 Appl. Phys. Lett. 98 081904

    [44]

    Yang X N, Zhou C, Sun Q J, Hu L N, Mauro J C, Wang C Z, Yue Y Z 2014 J. Phys. Chem. B 118 10258

    [45]

    Zheng H J, L Y M, Sun Q J, Hu L N, Yang X N, Yue Y Z 2016 Sci. Bull. 61 706

    [46]

    Na J H, Sohn S W, Kim W T, Kim D H 2007 Scripta Mater. 57 225

    [47]

    Lan S, Ren Y, Wei X Y, Wang B, Gilbert E P, Shibayama T, Watanabe S, Ohnuma M, Wang X L 2017 Nat. Commun. 8 14679

    [48]

    Kchemann S, Samwer K 2016 Acta Mater. 104 119

    [49]

    Jagla E A 1999 J. Phys.: Condens. Matter 11 10251

    [50]

    Tanaka H 2003 J. Phys.: Condens. Matter 15 L703

    [51]

    Liu L, Chen S H, Faraone A, Yen C W, Mou C Y 2005 Phys. Rev. Lett. 95 117802

    [52]

    Sheng H W, Liu H Z, Cheng Y Q, Wen J, Lee P L, Luo W K, Shastri S D, Ma E 2007 Nat. Mater. 6 192

    [53]

    Mishima O, Calvert L D, Whalley E 1985 Nature 314 76

    [54]

    McMillan P F 2004 J. Mater. Chem. 14 1506

    [55]

    Greaves G N, Wilding M C, Fearn S, Langstaff D, Kargl F, Cox S, van Q V, Majérus O, Benmore C J, Weber R 2008 Science 322 566

    [56]

    de Marzio M, Camisasca G, Rovere M, Gallo P 2017 J. Chem. Phys. 146 084502

    [57]

    de Marzio M, Camisasca G, Conde M M, Rovere M, Gallo P 2017 J. Chem. Phys. 146 084505

    [58]

    Li G, Wang Y Y, Liaw P K, Li Y C, Liu R P 2012 Phys. Rev. Lett. 109 125501

    [59]

    Cadien A, Hu Q Y, Meng Y, Cheng Y Q, Chen M W, Shu J F, Mao H K, Sheng H W 2013 Phys. Rev. Lett. 110 125503

    [60]

    Xu W, Sandor M T, Yu Y, Ke H B, Zhang H P, Li M Z, Wang W H, Liu L, Wu Y 2015 Nat. Commun. 6 7696

    [61]

    Wei S, Yang F, Bednarcik J, Kaban I, Shuleshova O, Meyer A, Busch R 2013 Nat. Commun. 4 2083

    [62]

    Zhou C, Hu L N, Sun Q J, Qin J Y, Bian X F, Yue Y Z 2013 Appl. Phys. Lett. 103 171904

    [63]

    Wang C W, Hu L N, Wei C, Tong X, Zhou C, Sun Q J, Hui X D, Yue Y Z 2014 J. Chem. Phys. 141 164507

    [64]

    Jakse N, Pasturel A 2008 J. Chem. Phys. 129 104503

    [65]

    Cajahuaringa S, de Koning M, Antonelli A 2013 J. Chem. Phys. 139 224504

    [66]

    Hedström J, Swenson J, Bergman R, Jansson H, Kittaka S 2007 Eur. Phys. J. Special Topics 141 53

    [67]

    Monasterio M, Jansson H, Gaitero J J, Dolado J S, Cerveny S 2013 J. Chem. Phys. 139 164714

    [68]

    Sun Q J, Hu L N, Zhou C, Zheng H J, Yue Y Z 2015 J. Chem. Phys. 143 164504

    [69]

    Orava J, Hewak D W, Greer A L 2015 Adv. Funct. Mater. 25 4851

  • [1] 江双双, 朱力, 刘思楠, 杨詹詹, 兰司, 王寅岗. 局部塑性变形下铁基金属玻璃的致密化和非均匀性增强.  , 2021, (): . doi: 10.7498/aps.70.20211304
    [2] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究.  , 2018, 67(17): 178101. doi: 10.7498/aps.67.20180992
    [3] 武振伟, 李茂枝, 徐莉梅, 汪卫华. 非晶中结构遗传性及描述.  , 2017, 66(17): 176405. doi: 10.7498/aps.66.176405
    [4] 马将, 杨灿, 龚峰, 伍晓宇, 梁雄. 金属玻璃的热塑性成型.  , 2017, 66(17): 176404. doi: 10.7498/aps.66.176404
    [5] 金肖, 王利民. 非晶材料玻璃转变过程中记忆效应的热力学.  , 2017, 66(17): 176406. doi: 10.7498/aps.66.176406
    [6] 袁晨晨. 金属玻璃的键态特征与塑性起源.  , 2017, 66(17): 176402. doi: 10.7498/aps.66.176402
    [7] 汤依伟, 艾亮, 程昀, 王安安, 李书国, 贾明. 锂离子动力电池高倍率充放电过程中弛豫行为的仿真.  , 2016, 65(5): 058201. doi: 10.7498/aps.65.058201
    [8] 金鑫鑫, 金峰, 刘宁, 孙其诚. 准静态颗粒介质的弹性势能弛豫分析.  , 2016, 65(9): 096102. doi: 10.7498/aps.65.096102
    [9] 郭古青, 吴诗阳, 蔡光博, 杨亮. 判定金属玻璃微观结构中的二十面体类团簇.  , 2016, 65(9): 096402. doi: 10.7498/aps.65.096402
    [10] 孙其诚, 刘传奇, 周公旦. 颗粒介质弹性的弛豫.  , 2015, 64(23): 236101. doi: 10.7498/aps.64.236101
    [11] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡.  , 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [12] 陈艳, 蒋敏强, 戴兰宏. 金属玻璃温度依赖的拉压屈服不对称研究.  , 2012, 61(3): 036201. doi: 10.7498/aps.61.036201
    [13] 徐春龙, 侯兆阳, 刘让苏. Ca70Mg30金属玻璃形成过程热力学、 动力学和结构特性转变机理的模拟研究.  , 2012, 61(13): 136401. doi: 10.7498/aps.61.136401
    [14] 卢敏, 许卫兵, 刘维清, 侯春菊, 刘志勇. 银纳米杆高温熔化断裂弛豫性能的原子级模拟研究.  , 2010, 59(9): 6377-6383. doi: 10.7498/aps.59.6377
    [15] 刘峰斌, 汪家道, 陈大融, 赵明, 何广平. 不同密度氢吸附金刚石(100)表面的微观结构.  , 2010, 59(9): 6556-6562. doi: 10.7498/aps.59.6556
    [16] 许 峰, 刘堂晏, 黄永仁. 油水饱和球管孔隙模型弛豫的理论计算与计算机模拟.  , 2008, 57(1): 550-555. doi: 10.7498/aps.57.550
    [17] 许 峰, 刘堂晏, 黄永仁. 射频场照射下多自旋体系弛豫的理论计算.  , 2006, 55(6): 3054-3059. doi: 10.7498/aps.55.3054
    [18] 马新国, 唐超群, 黄金球, 胡连峰, 薛 霞, 周文斌. 锐钛矿型TiO2(101)面原子几何及弛豫结构的第一性原理计算.  , 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [19] 许峰, 黄永仁. 射频场照射下扩展的Solomon方程及射频场的照射对异核体系弛豫速率与NOE的影响.  , 2002, 51(6): 1371-1376. doi: 10.7498/aps.51.1371
    [20] 许峰, 黄永仁. 射频场照射下同核体系的弛豫.  , 2002, 51(2): 415-419. doi: 10.7498/aps.51.415
计量
  • 文章访问数:  6483
  • PDF下载量:  511
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-23
  • 修回日期:  2017-06-10
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map