-
磁性半导体兼具磁性和半导体特性,通过操控电子自旋,有望实现接近完全的电子极化,提供一种全新的导电方式和器件概念.目前磁性半导体的研究对象主要为稀磁半导体,采用在非磁性半导体中添加过渡族磁性元素使半导体获得内禀磁性的方法进行制备.但大部分稀磁半导体仅具有低温磁性,成为限制其在室温可操控电子器件中应用的瓶颈.针对这一关键科学问题,本文提出与传统稀磁半导体制备方法相反的合成思路,在磁性非晶合金中引入非金属元素诱发金属-半导体转变,使磁性非晶获得半导体电性,研制出具有新奇磁、光、电耦合特性的非晶态浓磁半导体,揭示其载流子调制磁性的内禀机理,发展出可在室温下工作的p-n结及电控磁器件.Magnetic semiconductors hold a very special position in the field of spintronics because they allow the effective manipulations of both charge and spin. This feature is important for devices combining logic functionalities and information storage capabilities. The existing technology to obtain diluted magnetic semiconductors (DMSs) is to dope magnetic elements into traditional semiconductors. So far, the DMSs have attracted much attention, yet it remains a challenge to increasing their Curie temperatures above room temperature, particularly for those III-V-based DMSs. In contrast to the concept of doping magnetic elements into conventional semiconductors to make DMSs, here we propose to introduce non-magnetic elements into originally ferromagnetic metals/alloys to form new species of magnetic semiconductors. To demonstrate this concept, we introduce oxygen into a ferromagnetic amorphous alloy to form semiconducting thin films. All the thin films are deposited on different substrates like Si, SiO2 and quartz glass by magnetron sputtering. The structures of the deposited thin films are characterized by a JEOL transmission electron microscope operated at 200 kV. The optical transparencies of the samples are measured using Jasco V-650 UV-vis spectrophotometer. The photoluminescence spectra of the samples are measured using RM1000 Raman microscope. Electrical properties of the samples are measured using Physical Property Measurement System (PPMS-9, Quantum Design). Magnetic properties, i.e., magnetic moment-temperature relations, are measured using SQUID-VSM (Quantum Design). With oxygen addition increasing, the amorphous alloy gradually becomes transparent. Accompanied by the opening of bandgap, its electric conduction changes from metal-type to semiconductor-type, indicating that the inclusion of oxygen indeed mediates a metal-semiconductor transition. For different oxygen content, the resistivities of these thin films are changed by about four orders of magnitude. Notably, all of them are ferromagnetic. All the samples show anomalous Hall effect. Furthermore, their magnetoresistance changes from a very small positive value of about 0.09% to a negative value of about -6.3% under an external magnetic field of 6 T. Correspondingly, the amorphous structure of the thin film evolves from a single-phase amorphous alloy to a single-phase amorphous metal oxide. Eventually a p-type CoFeTaBO magnetic semiconductor is developed, and has a Curie temperature above 600 K. The carrier density of this material is ~1020 cm-3. The CoFeTaBO magnetic semiconductor has a direct bandgap of about 2.4 eV. The room-temperature photoluminescence spectra further verify that its optical bandgap is ~2.5 eV. The demonstrations of p-n heterojunctions and electric field control of the room-temperature ferromagnetism in this material reflect its p-type semiconducting character and the intrinsic ferromagnetism modulated by its carrier concentration. Our findings may pave a new way to realizing high Curie temperature magnetic semiconductors with unusual multi-functionalities.
-
Keywords:
- amorphous alloys /
- magnetic semiconductor /
- magnetic properties /
- magnetotransport properties
[1] Waldrop M M 2016 Nature 530 144
[2] Ohno H 1998 Science 281 951
[3] Zhao J H, Deng J J, Zheng H Z 2007 Prog. Phys. 27 109 (in Chinese) [赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109]
[4] Kuang L A, Liu X C, Lu Z L, Ren S K, Liu C Y, Zhang F M, Du Y W 2005 Acta Phys. Sin. 54 2934 (in Chinese) [匡龙安, 刘兴翀, 路忠林, 任尚坤, 刘存业, 张凤鸣, 都有为 2005 54 2934]
[5] What don't we know? (special section) 2005 Science 309 82
[6] Kasuya T, Yanase A 1968 Rev. Mod. Phys. 40 684
[7] Munekata H, Ohno H, Molnar S, Segmller A, Chang A A, Esaki L 1989 Phys. Rev. Lett. 63 1849
[8] Ohno Y, Yong D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790
[9] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944
[10] Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019
[11] Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1
[12] Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A 2003 Nat. Mater. 2 673
[13] Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H 2001 Science 291 584
[14] Interview with Chambers S 2010 Nat. Mater. 9 956
[15] Coey J M D, Chambers S A 2008 MRS Bull. 33 1053
[16] Editorial 2010 Nat. Mater. 9 951
[17] Samarth N 2010 Nat. Mater. 9 955
[18] Zhou S Q, Li L, Yuan Y, Rushforth A W, Chen L, Wang Y T, Bottger R, Heller R, Zhao J H, Edmonds K W, Campion R P, Gallagher B L, Timm C, Helm M 2016 Phys. Rev. B 94 075205
[19] Xu D Q, Li P X, Lou Y L, Yue G L, Zhang C, Zhang Y, Liu N Z, Yang B 2016 Acta Phys. Sin. 65 197501 (in Chinese) [徐大庆, 李培咸, 娄永乐, 岳改丽, 张超, 张岩, 刘宁庄, 杨波 2016 65 197501]
[20] Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187
[21] Jungwirth T, Wunderlich J, Nová V, Olejník K, Gallagher B L, Campion R P, Edmonds K W, Rushforth A W, Ferguson A J, Němec P 2014 Rev. Mod. Phys. 86 855
[22] Zhao Q, Xiong Z H, Luo L, Sun Z H, Qin Z Z, Chen L L, Wu N 2017 Appl. Surf. Sci. 396 480
[23] Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel AA, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 Nat. Commun. 2 442
[24] Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412
[25] Zhao K, Zeng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F L, Uemura Y J, Dabkowsk H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Böni P, Jin C Q 2013 Nat. Commun. 4 1442
[26] Tu N T, Hai P N, Anh L D, Tanaka M 2016 Appl. Phys. Lett. 108 192401
[27] Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4 173
[28] Coey M, Ackland K, Venkatesan M, Sen S 2016 Nat. Phys. 12 694
[29] Fan Y, Kou X, Upadhyaya P, Shao Q, Pan L, Lang M, Che X, Tang J, Montazeri M, Murata K, Chang L T, Akyol M, Yu G, Nie T, Wong K L, Liu J, Wang Y, Tserkovnyak Y, Wang K L 2016 Nat. Nnotech. 11 352
[30] Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, Molnar S 2011 Nano Lett. 11 2584
[31] Paluskar P V, Lavrijsen R, Sicot M, Kohlhepp J T, Swagten H J M, Koopmans B 2009 Phys. Rev. Lett. 102 016602
[32] Gale W F, Totemeir T C 2004 Smithells Metals Reference Book (Ch. 8) (Burlington: Elsevier Buterworth-Heinmann) Table 8.8e
[33] Chen G H, Deng J X, Cui M, Song X M 2012 Novel Thin Film Materials for Electronics (Beijing: Chemical Industry Press) p28 (in Chinese) [陈光华, 邓金祥, 崔敏, 宋雪梅 2012 新型电子薄膜材料(北京: 化学工业出版社)第28页]
[34] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488
[35] Kim Y H, Heo J S, Kim T H, Park S, Yoon M H, Kim J, Oh M S, Yi G R, Noh Y Y, Park S K 2012 Nature 489 128
[36] Manyala N, DiTusa J F, Aeppli G, Young D P, Fisk Z 2000 Nature 404 581
[37] Pellegren J P, Sokalski V M 2015 IEEE Trans. Magn. 51 3400903
[38] Liu W J, Zhang H X, Shi J, Wang Z C, Song C, Wang X R, Lu S Y, Zhou X J, Gu L, Louzguine-Luzgin D M, Chen M W, Yao K F, Chen N 2016 Nat. Commun. 7 13497
[39] Hildebrandt E, Kurian J, Mller M M, Schroeder T, Kleebe H J, Alff L 2011 Appl. Phys. Lett. 99 112902
[40] Narushima S, Mizoguchi H, Shimizu K, Ueda K, Ohta H, Hirano M, Kamiya T, Hosono H 2003 Adv. Mater. 15 1409
-
[1] Waldrop M M 2016 Nature 530 144
[2] Ohno H 1998 Science 281 951
[3] Zhao J H, Deng J J, Zheng H Z 2007 Prog. Phys. 27 109 (in Chinese) [赵建华, 邓加军, 郑厚植 2007 物理学进展 27 109]
[4] Kuang L A, Liu X C, Lu Z L, Ren S K, Liu C Y, Zhang F M, Du Y W 2005 Acta Phys. Sin. 54 2934 (in Chinese) [匡龙安, 刘兴翀, 路忠林, 任尚坤, 刘存业, 张凤鸣, 都有为 2005 54 2934]
[5] What don't we know? (special section) 2005 Science 309 82
[6] Kasuya T, Yanase A 1968 Rev. Mod. Phys. 40 684
[7] Munekata H, Ohno H, Molnar S, Segmller A, Chang A A, Esaki L 1989 Phys. Rev. Lett. 63 1849
[8] Ohno Y, Yong D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790
[9] Ohno H, Chiba D, Matsukura F, Omiya T, Abe E, Dietl T, Ohno Y, Ohtani K 2000 Nature 408 944
[10] Dietl T, Ohno H, Matsukura F, Cibert J, Ferrand D 2000 Science 287 1019
[11] Pan F, Song C, Liu X J, Yang Y C, Zeng F 2008 Mater. Sci. Eng. R 62 1
[12] Sharma P, Gupta A, Rao K V, Owens F J, Sharma R, Ahuja R, Guillen J M O, Johansson B, Gehring G A 2003 Nat. Mater. 2 673
[13] Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S, Koinuma H 2001 Science 291 584
[14] Interview with Chambers S 2010 Nat. Mater. 9 956
[15] Coey J M D, Chambers S A 2008 MRS Bull. 33 1053
[16] Editorial 2010 Nat. Mater. 9 951
[17] Samarth N 2010 Nat. Mater. 9 955
[18] Zhou S Q, Li L, Yuan Y, Rushforth A W, Chen L, Wang Y T, Bottger R, Heller R, Zhao J H, Edmonds K W, Campion R P, Gallagher B L, Timm C, Helm M 2016 Phys. Rev. B 94 075205
[19] Xu D Q, Li P X, Lou Y L, Yue G L, Zhang C, Zhang Y, Liu N Z, Yang B 2016 Acta Phys. Sin. 65 197501 (in Chinese) [徐大庆, 李培咸, 娄永乐, 岳改丽, 张超, 张岩, 刘宁庄, 杨波 2016 65 197501]
[20] Dietl T, Ohno H 2014 Rev. Mod. Phys. 86 187
[21] Jungwirth T, Wunderlich J, Nová V, Olejník K, Gallagher B L, Campion R P, Edmonds K W, Rushforth A W, Ferguson A J, Němec P 2014 Rev. Mod. Phys. 86 855
[22] Zhao Q, Xiong Z H, Luo L, Sun Z H, Qin Z Z, Chen L L, Wu N 2017 Appl. Surf. Sci. 396 480
[23] Deng Z, Jin C Q, Liu Q Q, Wang X C, Zhu J L, Feng S M, Chen L C, Yu R C, Arguello C, Goko T, Ning F, Zhang J, Wang Y, Aczel AA, Munsie T, Williams T J, Luke G M, Kakeshita T, Uchida S, Higemoto W, Ito T U, Gu B, Maekawa S, Morris G D, Uemura Y J 2011 Nat. Commun. 2 442
[24] Sun F, Zhao G Q, Escanhoela C A, Chen B J, Kou R H, Wang Y G, Xiao Y M, Chow P, Mao H K, Haskel D, Yang W G, Jin C Q 2017 Phys. Rev. B 95 094412
[25] Zhao K, Zeng Z, Wang X C, Han W, Zhu J L, Li X, Liu Q Q, Yu R C, Goko T, Frandsen B, Liu L, Ning F L, Uemura Y J, Dabkowsk H, Luke G M, Luetkens H, Morenzoni E, Dunsiger S R, Senyshyn A, Böni P, Jin C Q 2013 Nat. Commun. 4 1442
[26] Tu N T, Hai P N, Anh L D, Tanaka M 2016 Appl. Phys. Lett. 108 192401
[27] Coey J M D, Venkatesan M, Fitzgerald C B 2005 Nat. Mater. 4 173
[28] Coey M, Ackland K, Venkatesan M, Sen S 2016 Nat. Phys. 12 694
[29] Fan Y, Kou X, Upadhyaya P, Shao Q, Pan L, Lang M, Che X, Tang J, Montazeri M, Murata K, Chang L T, Akyol M, Yu G, Nie T, Wong K L, Liu J, Wang Y, Tserkovnyak Y, Wang K L 2016 Nat. Nnotech. 11 352
[30] Chen L, Yang X, Yang F, Zhao J, Misuraca J, Xiong P, Molnar S 2011 Nano Lett. 11 2584
[31] Paluskar P V, Lavrijsen R, Sicot M, Kohlhepp J T, Swagten H J M, Koopmans B 2009 Phys. Rev. Lett. 102 016602
[32] Gale W F, Totemeir T C 2004 Smithells Metals Reference Book (Ch. 8) (Burlington: Elsevier Buterworth-Heinmann) Table 8.8e
[33] Chen G H, Deng J X, Cui M, Song X M 2012 Novel Thin Film Materials for Electronics (Beijing: Chemical Industry Press) p28 (in Chinese) [陈光华, 邓金祥, 崔敏, 宋雪梅 2012 新型电子薄膜材料(北京: 化学工业出版社)第28页]
[34] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488
[35] Kim Y H, Heo J S, Kim T H, Park S, Yoon M H, Kim J, Oh M S, Yi G R, Noh Y Y, Park S K 2012 Nature 489 128
[36] Manyala N, DiTusa J F, Aeppli G, Young D P, Fisk Z 2000 Nature 404 581
[37] Pellegren J P, Sokalski V M 2015 IEEE Trans. Magn. 51 3400903
[38] Liu W J, Zhang H X, Shi J, Wang Z C, Song C, Wang X R, Lu S Y, Zhou X J, Gu L, Louzguine-Luzgin D M, Chen M W, Yao K F, Chen N 2016 Nat. Commun. 7 13497
[39] Hildebrandt E, Kurian J, Mller M M, Schroeder T, Kleebe H J, Alff L 2011 Appl. Phys. Lett. 99 112902
[40] Narushima S, Mizoguchi H, Shimizu K, Ueda K, Ohta H, Hirano M, Kamiya T, Hosono H 2003 Adv. Mater. 15 1409
计量
- 文章访问数: 7376
- PDF下载量: 506
- 被引次数: 0