搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非对称双轴张应变对锗能带的影响

戴中华 钱一辰 谢耀平 胡丽娟 李晓娣 马海涛

引用本文:
Citation:

非对称双轴张应变对锗能带的影响

戴中华, 钱一辰, 谢耀平, 胡丽娟, 李晓娣, 马海涛

First-principle study of effect of asymmetric biaxial tensile strain on band structure of Germanium

Dai Zhong-Hua, Qian Yi-Chen, Xie Yao-Ping, Hu Li-Juan, Li Xiao-Di, Ma Hai-Tao
PDF
导出引用
  • 采用第一性原理方法系统地研究了沿(001)、(101)和(111)面施加晶面内各方向应变不相等的双轴张应变,即非对称双轴张应变对锗能带结构的影响.结果表明:对于沿(001)面施加非对称双轴张应变,至少某一个方向应变大于2.95%,间接-直接带隙转变才能发生;对于沿(101)面施加非对称双轴张应变,至少某一个方向应变大于3.44%,间接-直接带隙转变才能发生;然而,沿(111)面施加非对称双轴张应变,不发生间接-直接带隙转变.另外,研究还发现无论是施加对称双轴应变还是非对称双轴应变,间接-直接带隙转变得到的应变Ge带隙值都与应变前后拉伸面面积变化大小成反比.
    The strain engineering is an effective method to modulate the optical properties of germanium. The biaxial tensile strain has been extensively studied, most of the investigations focusing on biaxial tensile strain with equal in-plane strain at different crystal orientations, namely symmetric biaxial tensile strain. However, the effect of biaxial tensile strain with unequal in-plane strain at different crystal orientations, namely asymmetric biaxial tensile strain, has not been reported. In this paper, we systematically investigate the effect of asymmetric biaxial tensile strain on the band structure of Ge by using first-principle calculation.#br#We firstly calculate and analyze the dependence of band gap on strain for Ge with asymmetric biaxial tensile strain along three low Miller index planes, i.e., (001), (101) and (111). Then, we present the values of band gap and strain for some typical indirect-to-direct bandgap-transition-points under asymmetric biaxial tensile strain. Finally, we analyze the influence of biaxial tensile strain on the valance band structure. For the asymmetric biaxial tensile strain along the (001) plane, the indirect-to-direct band gap transition only occurs when the strain of one orientation is larger than 2.95%. For asymmetric biaxial tensile strain along the (101) plane, the indirect-to-direct band gap transition only occurs when the strain of one orientation is larger than 3.44%. Asymmetric biaxial tensile strain along the (111) plane cannot transform Ge into direct band gap material.#br#For asymmetric biaxial tensile strains along the (001) and (101) plane, the indirect-to-direct band gap transition points can be adjusted by changing the combination of in-plane strain at different crystal orientations. The value of bandgap of direct-band-gap Ge under biaxial tensile strain is inversely proportional to the area variation induced by application of strain. The asymmetric biaxial tensile strain along the (001) plane is the most effective to transform Ge into direct band gap material among the three types of biaxial strains, which are similar to the symmetric biaxial tensile strains.#br#In addition, the symmetric biaxial tensile strain will remove the three-fold degenerate states of valance band maximum, leading to a removal of the degeneracy between one heavy hole band and the light hole band. For biaxial tensile strain along the (001) and (101) plane, the asymmetric biaxial tensile strain could further remove the degeneracy between another heavy hole band and the light hole band.
      通信作者: 谢耀平, ypxie@shu.edu.cn
    • 基金项目: 上海市自然科学基金(批准号:15ZR1416000)、国家自然科学基金委员会中国工程物理研究院NSAF联合基金(批准号:U1530115)和国家自然科学基金(批准号:51301102)资助的课题.
      Corresponding author: Xie Yao-Ping, ypxie@shu.edu.cn
    • Funds: Project supported by Science and Technology Commission of Shanghai Municipality, China (Grant No. 15ZR1416000), China Academy of Engineering Physics Joint Funds of National Natural Science Foundation (Grant No. U1530115) and the National Science Foundation of China (Grant No. 51301102)
    [1]

    Soref R 2006 IEEE J. Sel. Top. Quant. Electron. 12 1678

    [2]

    Michel J, Liu J, Kimerling L C 2010 Nature Photon. 4 527

    [3]

    Kasper E 2010 Front. Optoelectron. China 3 143

    [4]

    Reed G T, Mashanovich G, Gardes F Y, Thomson D J 2010 Nature Photon. 4 518

    [5]

    Sun X, Liu J, Kimerling L C, Michel J 2009 Opt. Lett. 34 1198

    [6]

    Liu J, Sun X, Kimerling L C, Michel J 2009 Opt. Lett. 34 1738

    [7]

    Jain J R, Hryciw A, Baer T M, Miller D A B, Brongersma M L, Howe R T 2012 Nature Photon. 6 398

    [8]

    Huang W Q, Liu S R 2005 Acta Phys. Sin. 54 972 (in Chinese)[黄伟其, 刘世荣2005 54 972]

    [9]

    Ma S Y, Qin G G, You L P, Wang Y Y 2001 Acta Phys. Sin. 50 1580 (in Chinese)[马书懿, 秦国刚, 尤力平, 王印月2001 50 1580]

    [10]

    Boucaud P, Kurdi M E, Ghrib A, Prost M, Kersauson M, Sauvage S, Aniel F, Checoury X, Beaudoin G, Largeau L, Sagnes I, Ndong G, Chaigneau M, Ossikovski R 2013 Photon. Res. 1 102

    [11]

    Chen M J, Tsai C S, Wu M K 2006 Jpn. J. Appl. Phys. 45 6576

    [12]

    Sánchez-Péreza J R, Boztug C, Chen F, Sudradjat F F, Paskiewicz D M, Jacobson R B, Lagally M G, Paiella R 2011 Proc. Natl. Acad. Sci. USA 108 18893

    [13]

    Huo Y, Lin H, Chen R, Makarova M, Rong Y, Li M, Kamins T I, Vuckovic J, Harris J S 2011 Appl. Phys. Lett. 98 011111

    [14]

    Hoshina Y, Iwasaki K, Yamada A, Konagai M 2009 Jpn. J. Appl. Phys. 48 04C125

    [15]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlogl U, Dimoulas A 2012 J. Phys.:Condens. Matter 24 195802

    [16]

    Yang C H, Yu Z Y, Liu Y M, Lu P F, Gao T, Li M, Manzoor S 2013 Phys. B:Condens. Matter 427 62

    [17]

    Liu L, Zhang M, Hu L, Di Z, Zhao S J 2014 J. Appl. Phys. 116 113105

    [18]

    Inaoka T, Furukawa T, Toma R, Yanagisawa S 2015 J. Appl. Phys. 118 105704

    [19]

    Dai X Y, Yang C, Song J J, Zhang H M, Hao Y, Zheng R C 2012 Acta Phys. Sin. 61 237102 (in Chinese)[戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川2012 61 237102]

    [20]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [21]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [24]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U, Bracht H 2011 Appl. Phys. Lett. 99 072112

    [25]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U 2011 Appl. Phys. Lett. 99 162103

    [26]

    Hummer K, Harl J, Kresse G 2009 Phys. Rev. B 80 115205

    [27]

    Kittel C (translated by Xiang J Z, Wu X H) 2012 Introduction to Solid State Physics (8th Ed.) (Beijing:Chemical Industry Press) p133(in Chinese)[基泰尔C著(项金钟, 吴兴惠译) 2012固体物理导论第八版(北京:化学工业出版社)第133页]

  • [1]

    Soref R 2006 IEEE J. Sel. Top. Quant. Electron. 12 1678

    [2]

    Michel J, Liu J, Kimerling L C 2010 Nature Photon. 4 527

    [3]

    Kasper E 2010 Front. Optoelectron. China 3 143

    [4]

    Reed G T, Mashanovich G, Gardes F Y, Thomson D J 2010 Nature Photon. 4 518

    [5]

    Sun X, Liu J, Kimerling L C, Michel J 2009 Opt. Lett. 34 1198

    [6]

    Liu J, Sun X, Kimerling L C, Michel J 2009 Opt. Lett. 34 1738

    [7]

    Jain J R, Hryciw A, Baer T M, Miller D A B, Brongersma M L, Howe R T 2012 Nature Photon. 6 398

    [8]

    Huang W Q, Liu S R 2005 Acta Phys. Sin. 54 972 (in Chinese)[黄伟其, 刘世荣2005 54 972]

    [9]

    Ma S Y, Qin G G, You L P, Wang Y Y 2001 Acta Phys. Sin. 50 1580 (in Chinese)[马书懿, 秦国刚, 尤力平, 王印月2001 50 1580]

    [10]

    Boucaud P, Kurdi M E, Ghrib A, Prost M, Kersauson M, Sauvage S, Aniel F, Checoury X, Beaudoin G, Largeau L, Sagnes I, Ndong G, Chaigneau M, Ossikovski R 2013 Photon. Res. 1 102

    [11]

    Chen M J, Tsai C S, Wu M K 2006 Jpn. J. Appl. Phys. 45 6576

    [12]

    Sánchez-Péreza J R, Boztug C, Chen F, Sudradjat F F, Paskiewicz D M, Jacobson R B, Lagally M G, Paiella R 2011 Proc. Natl. Acad. Sci. USA 108 18893

    [13]

    Huo Y, Lin H, Chen R, Makarova M, Rong Y, Li M, Kamins T I, Vuckovic J, Harris J S 2011 Appl. Phys. Lett. 98 011111

    [14]

    Hoshina Y, Iwasaki K, Yamada A, Konagai M 2009 Jpn. J. Appl. Phys. 48 04C125

    [15]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlogl U, Dimoulas A 2012 J. Phys.:Condens. Matter 24 195802

    [16]

    Yang C H, Yu Z Y, Liu Y M, Lu P F, Gao T, Li M, Manzoor S 2013 Phys. B:Condens. Matter 427 62

    [17]

    Liu L, Zhang M, Hu L, Di Z, Zhao S J 2014 J. Appl. Phys. 116 113105

    [18]

    Inaoka T, Furukawa T, Toma R, Yanagisawa S 2015 J. Appl. Phys. 118 105704

    [19]

    Dai X Y, Yang C, Song J J, Zhang H M, Hao Y, Zheng R C 2012 Acta Phys. Sin. 61 237102 (in Chinese)[戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川2012 61 237102]

    [20]

    Kresse G, Furthmller J 1996 Phys. Rev. B 54 11169

    [21]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [22]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [23]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [24]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U, Bracht H 2011 Appl. Phys. Lett. 99 072112

    [25]

    Tahini H, Chroneos A, Grimes R W, Schwingenschlögl U 2011 Appl. Phys. Lett. 99 162103

    [26]

    Hummer K, Harl J, Kresse G 2009 Phys. Rev. B 80 115205

    [27]

    Kittel C (translated by Xiang J Z, Wu X H) 2012 Introduction to Solid State Physics (8th Ed.) (Beijing:Chemical Industry Press) p133(in Chinese)[基泰尔C著(项金钟, 吴兴惠译) 2012固体物理导论第八版(北京:化学工业出版社)第133页]

  • [1] 王坤, 乔英杰, 张晓红, 王晓东, 郑婷, 白成英, 张一鸣, 都时禹. 理想拉伸/剪切应变对U3Si2化学键键长及电荷密度分布影响的第一性原理研究.  , 2022, 71(22): 227102. doi: 10.7498/aps.71.20221210
    [2] 姜楠, 李奥林, 蘧水仙, 勾思, 欧阳方平. 应变诱导单层NbSi2N4材料磁转变的第一性原理研究.  , 2022, 71(20): 206303. doi: 10.7498/aps.71.20220939
    [3] 王娜, 许会芳, 杨秋云, 章毛连, 林子敬. 单层CrI3电荷输运性质和光学性质应变调控的第一性原理研究.  , 2022, 71(20): 207102. doi: 10.7498/aps.71.20221019
    [4] 许佳玲, 贾利云, 刘超, 吴佺, 赵领军, 马丽, 侯登录. Li(Na)AuS体系拓扑绝缘体材料的能带结构.  , 2021, 70(2): 027101. doi: 10.7498/aps.70.20200885
    [5] 侯璐, 童鑫, 欧阳钢. 一维carbyne链原子键性质应变调控的第一性原理研究.  , 2020, 69(24): 246802. doi: 10.7498/aps.69.20201231
    [6] 杨雯, 宋建军, 任远, 张鹤鸣. 光器件应用改性Ge的能带结构模型.  , 2018, 67(19): 198502. doi: 10.7498/aps.67.20181155
    [7] 底琳佳, 戴显英, 宋建军, 苗东铭, 赵天龙, 吴淑静, 郝跃. 基于锡组分和双轴张应力调控的临界带隙应变Ge1-xSnx能带特性与迁移率计算.  , 2018, 67(2): 027101. doi: 10.7498/aps.67.20171969
    [8] 胡洁琼, 谢明, 陈家林, 刘满门, 陈永泰, 王松, 王塞北, 李爱坤. Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究.  , 2017, 66(5): 057102. doi: 10.7498/aps.66.057102
    [9] 程旭东, 吴海信, 唐小路, 王振友, 肖瑞春, 黄昌保, 倪友保. Na2Ge2Se5电子结构和光学性质的第一性原理研究.  , 2014, 63(18): 184208. doi: 10.7498/aps.63.184208
    [10] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究.  , 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [11] 李智敏, 施建章, 卫晓黑, 李培咸, 黄云霞, 李桂芳, 郝跃. 掺铝3C-SiC电子结构的第一性原理计算及其微波介电性能.  , 2012, 61(23): 237103. doi: 10.7498/aps.61.237103
    [12] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究.  , 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [13] 戴显英, 杨程, 宋建军, 张鹤鸣, 郝跃, 郑若川. 应变Ge/Si1-xGex 价带色散模型.  , 2012, 61(13): 137104. doi: 10.7498/aps.61.137104
    [14] 马建立, 张鹤鸣, 宋建军, 王冠宇, 王晓艳. (001)面任意方向单轴应变硅材料能带结构.  , 2011, 60(2): 027101. doi: 10.7498/aps.60.027101
    [15] 孙伟峰, 李美成, 赵连城. Ga和Sb纳米线声子结构和电子-声子相互作用的第一性原理研究.  , 2010, 59(10): 7291-7297. doi: 10.7498/aps.59.7291
    [16] 卢志鹏, 祝文军, 卢铁城, 刘绍军, 崔新林, 陈向荣. 单轴应变条件下Fe从α到ε结构相变机制的第一性原理计算.  , 2010, 59(6): 4303-4312. doi: 10.7498/aps.59.4303
    [17] 黄云霞, 曹全喜, 李智敏, 李桂芳, 王毓鹏, 卫云鸽. Al掺杂ZnO粉体的第一性原理计算及微波介电性质.  , 2009, 58(11): 8002-8007. doi: 10.7498/aps.58.8002
    [18] 孔祥兰, 侯芹英, 苏希玉, 齐延华, 支晓芬. Ba0.5Sr0.5TiO3电子结构和光学性质的第一性原理研究.  , 2009, 58(6): 4128-4131. doi: 10.7498/aps.58.4128
    [19] 宋建军, 张鹤鸣, 胡辉勇, 宣荣喜, 戴显英. 应变Si1-xGex能带结构研究.  , 2009, 58(11): 7947-7951. doi: 10.7498/aps.58.7947
    [20] 宋建军, 张鹤鸣, 戴显英, 胡辉勇, 宣荣喜. 第一性原理研究应变Si/(111)Si1-xGex能带结构.  , 2008, 57(9): 5918-5922. doi: 10.7498/aps.57.5918
计量
  • 文章访问数:  5958
  • PDF下载量:  275
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-18
  • 修回日期:  2017-06-05
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map