搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

在轨空间目标光学特性宏观表征模型的反演重构

侯晴宇 巩晋南 樊志鹏 王一惠

引用本文:
Citation:

在轨空间目标光学特性宏观表征模型的反演重构

侯晴宇, 巩晋南, 樊志鹏, 王一惠

Inversion and reconstruction of the macroscopic photometric characterization model for on-orbit space object

Hou Qing-Yu, Gong Jin-Nan, Fan Zhi-Peng, Wang Yi-Hui
PDF
导出引用
  • 为了在天基远距离条件下反演三轴稳定空间目标表面的光学特性参数,提出了基于可见光时序光度信号分析的光学特性宏观表征模型的反演重构方法.首先,综合考虑空间目标的结构特性、表面材料特性、帆板的对日指向运动特性、光照观测几何以及光学系统特性,完善了面向在轨观测的空间目标可见光时序光度建模方法;其次,将光度模型等效为双面模型,并利用双向反射分布函数(BRDF)的多级融合模型表征复杂材料表面的光学反射特性,将BRDF对应的面积反射率乘积作为待反演参数;最后,以时序光度信号的测量值与模型值之间的差异最小为优化目标,建立线性优化方法,实现模型参数的反演.仿真实验表明,提出的模型在轨重构方法对于近轨观测条件下的本体、帆板信号的重构精度达到97%以上,验证了方法的正确性.
    In the field of space object optical situational awareness by space-based optics, the current research focuses on the detecting of long distance point target, the predicting and confirming of target trajectory. It is very important to analyze the on-orbit operation status and basic physical attribution of the space object by remote imaging without any structure or texture information. The analysis method can be used effectively to support the space object status discrimination and the related decision for on-orbit maintenance. In recent years, the number of three-axis stabilization space objects in orbit has increased dramatically. In order to retrieve the optical characteristic parameters of the three-axis stabilization space object surface in a long on-orbit distance, a new method is proposed to reconstruct the macroscopic photometric characterization based on analyzing visible photometric sequence signal. Firstly, based on the principle that solar panel can receive the maximum solar radiation energy, a directing model of solar panel is proposed. Considering the structural characteristics of space object, surface material characteristics, directing characteristics of the solar panels, illumination-observation geometry and the optical system characteristics, the photometric modeling method of the space object oriented to space-based observation is improved. Secondly, the photometric model is equivalent to a two-facet model, then multi-level fusion model of bidirectional reflectance distribution function (BRDF) is used to characterize optical reflection characteristics of complex material surfaces of the space object, and the product of area and reflection corresponding to multi-level BRDF is taken as the parameter of the reconstruction model. Finally, the minimum error between the measured result and reconstruction model of photometric signal is used as the optimization goal, and the linear optimization method is established to realize the inversion of the model parameters. As the space object and the observing satellite are in the same orbit or near orbit condition, the simulating experiment of photometric sequence signal and reconstructing experiment of macroscopic characterization model of optical characteristics are carried out. The simulation result shows that the proposed photometric model can describe the dynamic characteristics of on-orbit space object more comprehensively. And using the on-orbit reconstruction method of the macroscopic photometric model, the photometric signal reconstruction accuracy achieves more than 97% in the near orbit condition. So it is demonstrated that the on-orbit reconstruction method is correct. The method can provide a solution of optical situational awareness for space object on space-based platform, and provides technical support for inversing the attitude and shape of space object.
      通信作者: 巩晋南, Mercury_gong@126.com
    • 基金项目: 中央高校基本科研业务费专项资金(批准号:HIT.NSRIF.201630)资助的课题.
      Corresponding author: Gong Jin-Nan, Mercury_gong@126.com
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities,China (Grant No.HIT.NSRIF.201630).
    [1]

    Yuan Y, Sun C M, Zhang X B 2010 Acta Phys. Sin. 59 2097 (in Chinese) [袁艳, 孙成明, 张修宝 2010 59 2097]

    [2]

    Wang H Y, Zhang W, Dong A T 2013 Measurement 46 3654

    [3]

    Hou X Y, Zhi X Y, Zhang H L, Zhang W 2014 Proc. SPIE 9299 929914

    [4]

    Yuan Y, Sun C M, Zhang X B, Zhao H J, Wang Q 2010 Acta Opt. Sin. 30 2748 (in Chinese) [袁艳, 孙成明, 张修宝, 赵慧洁, 王潜 2010 光学学报 30 2748]

    [5]

    Wang H Y, Zhang W 2012 J. Mod. Opt. 59 547

    [6]

    Wang H Y, Zhang W, Dong A T 2012 Appl. Opt. 51 7810

    [7]

    Wang H Y, Zhang W, Wang F G 2012 Sci. China: Technol. Sci. 55 982

    [8]

    Linares R, Shoemaker M, Walker A, Mehta P M, Palmer D M, Thompson D C, Koller J, Crassidis J L 2013 Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference Maui, Hawaii, United States, September 10-13, 2013 p1889

    [9]

    Coughlin J 2014 Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference Maui, Hawaii, United States, September 9-12, 2014

    [10]

    Calef B, Africano J, Birge B, Hall D, Kervin P 2006 Proc. SPIE 6307 6307E

    [11]

    Hinks J C, Linares R, Crassidis J L 2013 AIAA Guidance, Navigation, and Control (GNC) Conference Boston, MA, United States, August 19-22, 2013 p1

    [12]

    Wetterer C J, Jah M 2009 J. Guid. Control. Dynam. 32 1648

    [13]

    Holzinger M J, Alfriend K T, Wetterer C J, Luu K K, Sabol C, Hamada K 2014 J. Guid. Control. Dynam. 37 921

    [14]

    Gou X R, Du X P, Liu H 2016 Laser Opt. Progress. 53 1 (in Chinese) [苟瑞新, 杜小平, 刘浩 2016 激光与光电子学进展 53 1]

    [15]

    Zhuang X X, Ruan N J, Zhao S S 2016 Infrared Laser Eng. 45 201 (in Chinese) [庄绪霞, 阮宁娟, 赵思思 2016 红外与激光工程 45 201]

    [16]

    Du X P, Liu H, Chen H, Gou X R, Du M J 2016 Acta Opt. Sin. 36 251 (in Chinese) [杜小平, 刘浩, 陈杭, 苟瑞新, 杜明江 2016 光学学报 36 251]

    [17]

    Sun C M, Zhao F, Yuan Y 2015 Acta Phys. Sin. 64 034202 (in Chinese) [孙成明, 赵飞, 袁艳 2015 64 034202]

  • [1]

    Yuan Y, Sun C M, Zhang X B 2010 Acta Phys. Sin. 59 2097 (in Chinese) [袁艳, 孙成明, 张修宝 2010 59 2097]

    [2]

    Wang H Y, Zhang W, Dong A T 2013 Measurement 46 3654

    [3]

    Hou X Y, Zhi X Y, Zhang H L, Zhang W 2014 Proc. SPIE 9299 929914

    [4]

    Yuan Y, Sun C M, Zhang X B, Zhao H J, Wang Q 2010 Acta Opt. Sin. 30 2748 (in Chinese) [袁艳, 孙成明, 张修宝, 赵慧洁, 王潜 2010 光学学报 30 2748]

    [5]

    Wang H Y, Zhang W 2012 J. Mod. Opt. 59 547

    [6]

    Wang H Y, Zhang W, Dong A T 2012 Appl. Opt. 51 7810

    [7]

    Wang H Y, Zhang W, Wang F G 2012 Sci. China: Technol. Sci. 55 982

    [8]

    Linares R, Shoemaker M, Walker A, Mehta P M, Palmer D M, Thompson D C, Koller J, Crassidis J L 2013 Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference Maui, Hawaii, United States, September 10-13, 2013 p1889

    [9]

    Coughlin J 2014 Proceedings of the Advanced Maui Optical and Space Surveillance Technologies Conference Maui, Hawaii, United States, September 9-12, 2014

    [10]

    Calef B, Africano J, Birge B, Hall D, Kervin P 2006 Proc. SPIE 6307 6307E

    [11]

    Hinks J C, Linares R, Crassidis J L 2013 AIAA Guidance, Navigation, and Control (GNC) Conference Boston, MA, United States, August 19-22, 2013 p1

    [12]

    Wetterer C J, Jah M 2009 J. Guid. Control. Dynam. 32 1648

    [13]

    Holzinger M J, Alfriend K T, Wetterer C J, Luu K K, Sabol C, Hamada K 2014 J. Guid. Control. Dynam. 37 921

    [14]

    Gou X R, Du X P, Liu H 2016 Laser Opt. Progress. 53 1 (in Chinese) [苟瑞新, 杜小平, 刘浩 2016 激光与光电子学进展 53 1]

    [15]

    Zhuang X X, Ruan N J, Zhao S S 2016 Infrared Laser Eng. 45 201 (in Chinese) [庄绪霞, 阮宁娟, 赵思思 2016 红外与激光工程 45 201]

    [16]

    Du X P, Liu H, Chen H, Gou X R, Du M J 2016 Acta Opt. Sin. 36 251 (in Chinese) [杜小平, 刘浩, 陈杭, 苟瑞新, 杜明江 2016 光学学报 36 251]

    [17]

    Sun C M, Zhao F, Yuan Y 2015 Acta Phys. Sin. 64 034202 (in Chinese) [孙成明, 赵飞, 袁艳 2015 64 034202]

  • [1] 黎章龙, 胡长青, 赵梅, 秦继兴, 李整林, 杨雪峰. 基于大掠射角海底反射特性的深海地声参数反演.  , 2022, 71(11): 114302. doi: 10.7498/aps.71.20211915
    [2] 张知原, 李冰, 刘仕奇, 张洪林, 胡斌杰, 赵德双, 王楚楠. 基于时间反演的局域空间多目标均匀恒定长时无线输能.  , 2022, 71(1): 014101. doi: 10.7498/aps.71.20211231
    [3] 张知原, 李冰. 基于时间反演的局域空间多目标均匀恒定长时无线输能研究.  , 2021, (): . doi: 10.7498/aps.70.20211231
    [4] 谭凡教, 苏金宇, 侯晴宇, 王佳轩, 王一惠. 基于时谱信号分析的在轨空间目标姿态感知.  , 2020, 69(21): 214201. doi: 10.7498/aps.69.20200098
    [5] 周彦玲, 范军, 王斌. 塑料类高分子聚合物材料水中目标声学参数反演.  , 2019, 68(21): 214301. doi: 10.7498/aps.68.20190991
    [6] 江鹏飞, 林建恒, 孙军平, 衣雪娟. 考虑噪声源深度分布的海洋环境噪声模型及地声参数反演.  , 2017, 66(1): 014306. doi: 10.7498/aps.66.014306
    [7] 陈桂波, 张佳佳, 王超群, 毕娟. 一种基于激光辐照热效应的薄膜参数反演方法.  , 2016, 65(12): 124401. doi: 10.7498/aps.65.124401
    [8] 陈秋菊, 姜秋喜, 曾芳玲, 宋长宝. 基于时间反演电磁波的稀疏阵列单频信号空间功率合成.  , 2015, 64(20): 204101. doi: 10.7498/aps.64.204101
    [9] 孙成明, 赵飞, 袁艳. 基于光谱的天基空间点目标特征提取与识别.  , 2015, 64(3): 034202. doi: 10.7498/aps.64.034202
    [10] 董建军, 邓博, 曹柱荣, 江少恩. 多目标优化推断内爆芯部温度和密度空间分布.  , 2014, 63(12): 125209. doi: 10.7498/aps.63.125209
    [11] 孙兰君, 田兆硕, 任秀云, 张延超, 付石友. 溢油海水双向反射分布函数的建模及仿真.  , 2014, 63(13): 134211. doi: 10.7498/aps.63.134211
    [12] 朱元庆, 曲兴华, 张福民, 陶会荣. 实际加工表面红外激光散射特性的实验研究.  , 2013, 62(24): 244201. doi: 10.7498/aps.62.244201
    [13] 赵敏杰, 司福祺, 陆亦怀, 汪世美, 江宇, 周海金, 刘文清. 星载大气痕量气体差分吸收光谱仪定标系统中铝漫反射板实验测量研究.  , 2013, 62(24): 249301. doi: 10.7498/aps.62.249301
    [14] 廖东, 王小敏, 张家树, 张文芳. 基于空间伸缩结构的参数可控的混沌Hash函数.  , 2012, 61(23): 230506. doi: 10.7498/aps.61.230506
    [15] 袁艳, 孙成明, 黄锋振, 赵慧洁, 王潜. 深空背景下空间目标紫外特性建模方法研究.  , 2011, 60(8): 089501. doi: 10.7498/aps.60.089501
    [16] 孙成明, 袁艳, 张修宝. 深空背景下空间目标红外特性建模方法研究.  , 2010, 59(10): 7523-7530. doi: 10.7498/aps.59.7523
    [17] 袁艳, 孙成明, 张修宝. 空间目标表面材料光谱双向反射分布函数测量与建模.  , 2010, 59(3): 2097-2103. doi: 10.7498/aps.59.2097
    [18] 杨坤德, 马远良. 利用海底反射信号进行地声参数反演的方法.  , 2009, 58(3): 1798-1805. doi: 10.7498/aps.58.1798
    [19] 宫彦军, 吴振森. 转动圆柱和圆锥的激光距离多普勒像分析模型.  , 2009, 58(9): 6227-6235. doi: 10.7498/aps.58.6227
    [20] 刘建东, 余有明. 基于可变参数双向耦合映像系统的时空混沌Hash函数设计.  , 2007, 56(3): 1297-1304. doi: 10.7498/aps.56.1297
计量
  • 文章访问数:  6747
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-09
  • 修回日期:  2017-04-07
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map