搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非绝热分子动力学的量子路径模拟

李晓克 冯伟

引用本文:
Citation:

非绝热分子动力学的量子路径模拟

李晓克, 冯伟

Quantum trajectory simulation for nonadiabatic molecular dynamics

Li Xiao-Ke, Feng Wei
PDF
导出引用
  • 基于近期发展的经典-量子混合模拟非绝热分子动力学的量子路径方案,本文对5个典型势能面模型进行了模拟,包括单交叉模型、双交叉模型、拓展耦合模型、哑铃模型以及双弓模型.由于难以在严格意义上得到退相干速率,数值模拟中,我们比较了三个不同的退相干速率公式,包括冻结高斯波包近似退相干速率、能量分辨速率以及力分辨速率.在模拟过程中,我们恰当地处理了势能面跳跃时的能量守恒和力的反向问题.通过与全量子动力学模拟的精确结果进行对比发现,对于结构较简单的势能面模型,三种退相干速率都能得到较好的结果;然而对于较复杂的势能面模型,由于复杂量子干涉的原因,与其他混合经典-量子动力学方案类似,量子路径方案仍然难以得到较准确的结果.如何发展更加有效的混合经典-量子模拟方案,是未来研究的重要课题.
    The mixed quantum-classical (MQC) molecular dynamics (MD) approaches are extremely important in practice since, with the increase of atomic degrees of freedom, a full quantum mechanical evaluation for molecular dynamics would quickly become intractable. Moreover, in some cases, the nonadiabatic effects are of crucial importance in the proximity of conical intersection of potential energy surfaces (PESs), where the energy separation between different PESs becomes comparable to the nonadiabatic coupling. In the past decades, there has been great interest in developing and improving various nonadiabatic MQC-MD protocols. The widely known nonadiabatic MD proposals include the so-called Ehrenfest or time-dependent-Hartree mean-field approach, the trajectory surface-hopping method, and their mixed scheme. Among the trajectory-based surface hopping methods, the most popular one is Tully's fewest switches surface hopping approach. In this approach, the nonadiabatic dynamics is treated by allowing hops from one PES to another, with the hopping probability determined by a certain artificial hopping algorithm. In our present work, we extend the study of a recent work on the nonadiabatic MQC-MD scheme, which is based on a view that the nonadiabatic MQC-MD actually implies an effective quantum measurement on the electronic states by the classical motion of atoms. The new protocol, say, the quantum trajectory (QT) approach, provides a natural interface between the separate quantum and classical treatments, without invoking artificial surface hopping algorithm. Moreover, it also connects two widely adopted nonadiabatic dynamics methods, the Ehrenfest mean-field theory and the trajectory surface-hopping method. In our present study, we implement further the QT approach to simulate several typical potential-surface models, i.e., including the single avoided crossing, dual avoided crossing, extended coupling, dumbbell and double arch potentials. In particular, we simulate and compare three decoherence rates, which are from different physical considerations, i.e., the frozen Gaussian approximation, energy discrimination and force discrimination. We also design simulation algorithms to properly account for the energy conservation and force direction change associated with the surface hopping. In most cases, we find that the QT results are in good agreement with those from the full quantum dynamics, which is insensitive to the specific form of the decoherence rate. But for the model involving strong quantum interference, like other nonadiabatic MQC-MD schemes, the QT approach cannot give desirable results. Developing better method should be useful for future investigations in this research area.
      通信作者: 冯伟, fwphy@tju.edu.cn
      Corresponding author: Feng Wei, fwphy@tju.edu.cn
    [1]

    Gerber R B, Buch V, Ratner M A 1982 J. Chem. Phys. 77 3022

    [2]

    Micha D A 1983 J. Chem. Phys. 78 7138

    [3]

    Li X S, Tully J C, Schlegel H B, Frisch M J 2005 J. Chem. Phys. 123 084106

    [4]

    Tully J C, Preston P K 1971 J. Chem. Phys. 55 562

    [5]

    Miller W H, George T F 1972 J. Chem. Phys. 56 5637

    [6]

    Kuntz P J, Kendrick J, Whitton W N 1979 Chem. Phys. 38 147

    [7]

    Blais N C, Truhlar D G 1983 J. Chem. Phys. 79 1334

    [8]

    Ali D P, Miller W H 1983 J. Chem. Phys. 78 6640

    [9]

    Tully J C 1990 J. Chem. Phys. 93 1061

    [10]

    Kuntz P J 1991 J. Chem. Phys. 95 141

    [11]

    Webster F, Wang E T, Rossky P J, Friesner R A 1994 J. Chem. Phys. 100 4835

    [12]

    Prezhdo O V, Rossky P J 1997 J. Chem. Phys. 107 825

    [13]

    Zhu C Y, Jasper A W, Truhlar D G 2004 J. Chem. Phys. 120 5543

    [14]

    Zhu C Y, Nangia S, Jasper A W, Truhlar D G 2004 J. Chem. Phys. 121 7658

    [15]

    Feng W, Xu L T, Li X Q, Fang W H, Yan Y J 2014 AIP Adv. 4 077131

    [16]

    Li B, Han K L 2009 J. Phys. Chem. A 113 10189

    [17]

    Li B, Chu T S, Han K L 2010 J. Comput. Chem. 31 362

    [18]

    Yang M H, Huo C Y, Li A Y, Lei Y B, Yu L, Zhu C Y 2017 Phys. Chem. Chem. Phys. 19 12185

    [19]

    Lu J F, Zhou Z N 2016 J. Chem. Phys. 145 124109

    [20]

    Schubert A, Falvo C, Meier C 2016 J. Chem. Phys. 145 054108

    [21]

    Wang L J, Prezhdo O V, Beljonne D 2015 Phys. Chem. Chem. Phys. 17 12395

    [22]

    Kosloff R 1988 J. Phys. Chem. 92 2087

    [23]

    Schatz G C 1996 J. Phys. Chem. 100 12839

    [24]

    Zhang J Z H, Dai J, Zhu W 1997 J. Phys. Chem. A 101 2746

    [25]

    Guo H, Yarkony D R 2016 Phys. Chem. Chem. Phys. 18 26335

    [26]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [27]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431

    [28]

    Zhang S B, Wu Y, Wang J G 2016 J. Chem. Phys. 145 224306

    [29]

    Jacobs K, Steck D A 2006 Contemp. Phys. 47 279

    [30]

    Xie B B, Liu L H, Cui G L, Fang W H, Cao J, Feng W, Li X Q 2015 J. Chem. Phys. 143 194107

    [31]

    Akimov A V, Long R, Prezhdo O V 2014 J. Chem. Phys. 140 194107

    [32]

    Zhu C Y, Jasper A W, Truhlar D G 2005 J. Chem. Theory Comput. 1 527

    [33]

    Bedard-Hearn M J, Larsen R E, Schwartz B J 2005 J. Chem. Phys. 123 234106

    [34]

    Prezhdo O V 1999 J. Chem. Phys. 111 8366

    [35]

    Granucci G, Persico M 2007 J. Chem. Phys. 126 134114

    [36]

    Thachuk M, Ivanov M Y, Wardlaw D M 1998 J. Chem. Phys. 109 5747

    [37]

    Heller E J 1981 J. Chem. Phys. 75 2923

    [38]

    Schwartz B J, Bittner E R, Prezhdo O V, Rossky P J 1996 J. Chem. Phys. 104 5942

    [39]

    Lan Z G, Shao J S 2012 Prog. Chem. 24 1105 (in Chinese) [兰峥岗, 邵久书 2012 化学进展 24 1105]

    [40]

    Hammes-Schiffer S, Tully J C 1994 J. Chem. Phys. 101 4657

    [41]

    Subotnik J E 2010 J. Chem. Phys. 132 134112

    [42]

    Subotnik J E, Shenvi N 2011 J. Chem. Phys. 134 024105

  • [1]

    Gerber R B, Buch V, Ratner M A 1982 J. Chem. Phys. 77 3022

    [2]

    Micha D A 1983 J. Chem. Phys. 78 7138

    [3]

    Li X S, Tully J C, Schlegel H B, Frisch M J 2005 J. Chem. Phys. 123 084106

    [4]

    Tully J C, Preston P K 1971 J. Chem. Phys. 55 562

    [5]

    Miller W H, George T F 1972 J. Chem. Phys. 56 5637

    [6]

    Kuntz P J, Kendrick J, Whitton W N 1979 Chem. Phys. 38 147

    [7]

    Blais N C, Truhlar D G 1983 J. Chem. Phys. 79 1334

    [8]

    Ali D P, Miller W H 1983 J. Chem. Phys. 78 6640

    [9]

    Tully J C 1990 J. Chem. Phys. 93 1061

    [10]

    Kuntz P J 1991 J. Chem. Phys. 95 141

    [11]

    Webster F, Wang E T, Rossky P J, Friesner R A 1994 J. Chem. Phys. 100 4835

    [12]

    Prezhdo O V, Rossky P J 1997 J. Chem. Phys. 107 825

    [13]

    Zhu C Y, Jasper A W, Truhlar D G 2004 J. Chem. Phys. 120 5543

    [14]

    Zhu C Y, Nangia S, Jasper A W, Truhlar D G 2004 J. Chem. Phys. 121 7658

    [15]

    Feng W, Xu L T, Li X Q, Fang W H, Yan Y J 2014 AIP Adv. 4 077131

    [16]

    Li B, Han K L 2009 J. Phys. Chem. A 113 10189

    [17]

    Li B, Chu T S, Han K L 2010 J. Comput. Chem. 31 362

    [18]

    Yang M H, Huo C Y, Li A Y, Lei Y B, Yu L, Zhu C Y 2017 Phys. Chem. Chem. Phys. 19 12185

    [19]

    Lu J F, Zhou Z N 2016 J. Chem. Phys. 145 124109

    [20]

    Schubert A, Falvo C, Meier C 2016 J. Chem. Phys. 145 054108

    [21]

    Wang L J, Prezhdo O V, Beljonne D 2015 Phys. Chem. Chem. Phys. 17 12395

    [22]

    Kosloff R 1988 J. Phys. Chem. 92 2087

    [23]

    Schatz G C 1996 J. Phys. Chem. 100 12839

    [24]

    Zhang J Z H, Dai J, Zhu W 1997 J. Phys. Chem. A 101 2746

    [25]

    Guo H, Yarkony D R 2016 Phys. Chem. Chem. Phys. 18 26335

    [26]

    Chu T S, Zhang Y, Han K L 2006 Int. Rev. Phys. Chem. 25 201

    [27]

    Chu T S, Han K L 2008 Phys. Chem. Chem. Phys. 10 2431

    [28]

    Zhang S B, Wu Y, Wang J G 2016 J. Chem. Phys. 145 224306

    [29]

    Jacobs K, Steck D A 2006 Contemp. Phys. 47 279

    [30]

    Xie B B, Liu L H, Cui G L, Fang W H, Cao J, Feng W, Li X Q 2015 J. Chem. Phys. 143 194107

    [31]

    Akimov A V, Long R, Prezhdo O V 2014 J. Chem. Phys. 140 194107

    [32]

    Zhu C Y, Jasper A W, Truhlar D G 2005 J. Chem. Theory Comput. 1 527

    [33]

    Bedard-Hearn M J, Larsen R E, Schwartz B J 2005 J. Chem. Phys. 123 234106

    [34]

    Prezhdo O V 1999 J. Chem. Phys. 111 8366

    [35]

    Granucci G, Persico M 2007 J. Chem. Phys. 126 134114

    [36]

    Thachuk M, Ivanov M Y, Wardlaw D M 1998 J. Chem. Phys. 109 5747

    [37]

    Heller E J 1981 J. Chem. Phys. 75 2923

    [38]

    Schwartz B J, Bittner E R, Prezhdo O V, Rossky P J 1996 J. Chem. Phys. 104 5942

    [39]

    Lan Z G, Shao J S 2012 Prog. Chem. 24 1105 (in Chinese) [兰峥岗, 邵久书 2012 化学进展 24 1105]

    [40]

    Hammes-Schiffer S, Tully J C 1994 J. Chem. Phys. 101 4657

    [41]

    Subotnik J E 2010 J. Chem. Phys. 132 134112

    [42]

    Subotnik J E, Shenvi N 2011 J. Chem. Phys. 134 024105

  • [1] 孙震, 吕项, 李盛, 安忠. 绝热表象下非绝热分子动力学方法.  , 2024, 73(14): 140201. doi: 10.7498/aps.73.20240401
    [2] 庞晓娟, 赵凯玥, 何航宇, 张宁波, 蒋臣威. 靛红双氮二苯腙分子开关的光致异构化机理.  , 2024, 73(17): 173101. doi: 10.7498/aps.73.20240461
    [3] 王月, 马杰. MoS2中S原子空位形成的非绝热动力学研究.  , 2023, 72(22): 226101. doi: 10.7498/aps.72.20230787
    [4] 张禧征, 王鹏, 张坤亮, 杨学敏, 宋智. 非厄米临界动力学及其在量子多体系统中的应用.  , 2022, 71(17): 174501. doi: 10.7498/aps.71.20220914
    [5] 张骄阳, 丛爽, 王驰, SajedeHarraz. 借助弱测量和环境辅助测量的N量子比特状态退相干抑制.  , 2022, 71(22): 220303. doi: 10.7498/aps.71.20220760
    [6] 王雪梅, 张安琪, 赵生妹. 电路量子电动力学中基于超绝热捷径的控制相位门实现.  , 2022, 71(15): 150301. doi: 10.7498/aps.71.20220248
    [7] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验.  , 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [8] 周边, 杨亮. 分子动力学模拟冷却速率对非晶合金结构与变形行为的影响.  , 2020, 69(11): 116101. doi: 10.7498/aps.69.20191781
    [9] 闫婕, 魏苗苗, 邢燕霞. HgTe/CdTe量子阱中自旋拓扑态的退相干效应.  , 2019, 68(22): 227301. doi: 10.7498/aps.68.20191072
    [10] 赵虎, 李铁夫, 刘其春, 张颖珊, 刘建设, 陈炜. 三维传输子量子比特的退相干参数表征.  , 2014, 63(22): 220305. doi: 10.7498/aps.63.220305
    [11] 陈高, 杨玉军, 郭福明. 双色激光脉冲辐照下38 as孤立短脉冲的产生.  , 2013, 62(7): 073203. doi: 10.7498/aps.62.073203
    [12] 陈基根, 曾思良, 杨玉军, 程超. 三色激光控制量子路径生成短于30阿秒的孤立脉冲.  , 2012, 61(12): 123201. doi: 10.7498/aps.61.123201
    [13] 赵文垒, 王建忠, 豆福全. 混沌微扰导致的量子退相干.  , 2012, 61(24): 240302. doi: 10.7498/aps.61.240302
    [14] 李海宏, 刘文, 刘德胜. 理论计算中电势能零点的选取对电荷注入的影响.  , 2011, 60(9): 097201. doi: 10.7498/aps.60.097201
    [15] 宋立军, 严冬, 盖永杰, 王玉波. Dicke模型的量子混沌和单粒子相干动力学特性.  , 2010, 59(6): 3695-3699. doi: 10.7498/aps.59.3695
    [16] 陈基根, 陈高, 池方萍, 杨玉军. 量子路径控制生成宽频软X射线连续辐射谱.  , 2010, 59(5): 3162-3167. doi: 10.7498/aps.59.3162
    [17] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干.  , 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [18] 李海宏, 李冬梅, 刘 文, 李 元, 刘晓静, 刘德胜, 解士杰. 金属/掺杂聚合物/金属结构中载流子的注入与输运.  , 2008, 57(2): 1117-1122. doi: 10.7498/aps.57.1117
    [19] 谭 霞, 张成强, 夏云杰. 双模场与原子相互作用中的量子纠缠和内禀退相干.  , 2006, 55(5): 2263-2268. doi: 10.7498/aps.55.2263
    [20] 王成志, 方卯发. 双模压缩真空态与原子相互作用中的量子纠缠和退相干.  , 2002, 51(9): 1989-1995. doi: 10.7498/aps.51.1989
计量
  • 文章访问数:  8472
  • PDF下载量:  339
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-03
  • 修回日期:  2017-05-16
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map