搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于内核构建的Cu-Au-Pd团簇稳定结构优化

吴夏 魏征

引用本文:
Citation:

基于内核构建的Cu-Au-Pd团簇稳定结构优化

吴夏, 魏征

Geometrical optimization of Cu-Au-Pd clusters based on the construction of inner cores

Wu Xia, Wei Zheng
PDF
导出引用
  • 具有特殊催化、磁性和化学活性的三元合金团簇已成为基础科学研究的热点问题.确定其稳定结构是研究团簇性质的重要前提.针对大尺寸Cu-Au-Pd团簇结构优化,提出了内核构建的方法改进了自适应免疫优化算法的效率(称为AIOA-IC算法).采用基于紧束缚势二阶矩近似的多体Gupta势函数来描述三元合金团簇原子间相互作用.为测试算法效率优化了原子数为60的Ag-Pd-Pt团簇稳定结构.结果显示新得到的结构比文献报道的团簇结构势能量值更低,由此可知AIOA-IC算法具有更强的势能面搜索能力.运用该算法研究了38及55原子Cu-Au-Pd团簇的稳定结构.所研究的38原子Cu-Au-Pd团簇包含了五折叠、六折叠和截角八面体结构,并且原子成分比例影响了团簇的结构类型.而55原子Cu-Au-Pd团簇均为完整二十面体结构,序列参数显示Cu,Au和Pd原子分层现象明显.对于147原子Cu12Au93Pd42团簇完整二十面体结构,中心原子为Au,内层和次外层分别被12个Cu原子和42个Pd原子占据,最外层则被92个Au原子占满.通过原子半径及表面能分析了Cu,Pd和Au原子分别倾向于分布在内层、次外层和最外层的规律.
    The trimetallic cluster has become a hot topic in the field of basic scientific research due to its special catalytic, magnetic and chemical activities. It is very important to determine the stable structures of clusters. In order to optimize the stable structure of large size Cu-Au-Pd cluster, a modification algorithm of adaptive immune optimization algorithm based on the construction of inner cores, called AIOA-IC algorithm, is proposed. The only difference between AIOA and AIOA-IC lies in their starting structures. Instead of generating the starting structure randomly in AIOA, an inner core in the AIOA-IC method is used for generating the starting structure. Several motifs, such as decahedron, icosahedron, face centered cubic, six-fold pancake structure, and Leary tetrahedron, are randomly selected as the inner cores. The size of the inner core is determined according to the cluster size. The Gupta potential based on the second moment approximation of tight binding potential is used to describe the interatomic interaction between Cu-Au-Pd clusters, and the corresponding potential parameters, such as the cohesive energy, lattice constants, and elastic constants are obtained by fitting the experimental values. To test the efficiency of the proposed algorithm, the stable structure of Ag-Pd-Pt cluster with 60 atoms is optimized. The results show that the new structure has lower energy than the cluster reported in the literature. It can be seen that the AIOA-IC algorithm has a stronger ability to search for the potential energy surface of the Gupta potential. Furthermore, the proposed algorithm is used to optimize the stable structures of 38-atom and 55-atom Cu-Au-Pd clusters. The structures of the investigated Cu6AunPd32-n, CunAu6Pd32-n and CunAu32-nPd6 (n=1-31) clusters can be categorized into three types:five-fold, six-fold, and truncated octahedron. Moreover, it is found that the compositions of Cu, Au and Pd atoms in the trimetallic clusters affect the structural type of the cluster. However, the Cu13AunPd42-n, CunAu13Pd42-n, and CunAu42-nPd13 (n=1-41) clusters each have a structure of complete Mackay icosahedron. Furthermore, the order parameter results show that Cu, Au and Pd atoms each have a significant segregation phenomenon. For the 147-atom Cu12Au93Pd42 cluster, the structure is also of an icosahedron. The central atom is Au, and the inner shell and sub-outer shell are occupied by 12 Cu and 42 Pd atoms, respectively. The outer shell is filled with 92 Au atoms. The results show that the Cu, Pd and Au atoms tend to be distributed in the inner shell, sub-outer shell, and outer shell, respectively. This can be further explained by the results of the atomic radius and the surface energy.
      通信作者: 吴夏, xiawu@aqnu.edu.cn
    • 基金项目: 安徽高校自然科学研究项目重点项目(批准号:KJ2017A349)资助的课题.
      Corresponding author: Wu Xia, xiawu@aqnu.edu.cn
    • Funds: Project supported by the Key University Science Research Project of Anhui Province,China (Grant No.KJ2017A349).
    [1]

    Sharma S, Kurashiqe W, Nobusada K, Neqishi Y 2015 Nanoscale 7 10606

    [2]

    Zhang M, Zhang J F, Gu T, Zhang H Y, Luo Y H, Cao W 2015 J. Phys. Chem. A 119 3458

    [3]

    Li T J, Sun Y, Zheng J W, Shao G F, Liu T D 2015 Acta Phys. Sin. 64 153601 (in Chinese) [李铁军, 孙跃, 郑骥文, 邵桂芳, 刘暾东 2015 64 153601]

    [4]

    Ma Z N, Jiang M, Wang L 2015 Acta Phys. Sin. 64 187102 (in Chinese) [马振宁, 蒋敏, 王磊 2015 64 187102]

    [5]

    Sattler K, Mhlbach J, Recknagel E 1980 Phys. Rev. Lett. 45 821

    [6]

    Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845

    [7]

    Meitzner G, Via G H, Lytle F W, Sinfelt J H 1985 J. Chem. Phys. 83 4793

    [8]

    Mao H, Huang T, Yu A S 2014 J. Mater. Chem. A 2 16378

    [9]

    Zhang X, Zhang F, Chan K Y 2004 Catal. Commum. 5 749

    [10]

    Wu X, Liu Q M, Sun Y, Wu G H 2015 RSC Adv. 5 51142

    [11]

    Deaven D M, Tit N, Morris J R, Ho K M 1996 Chem. Phys. Lett. 256 195

    [12]

    Wales D J, Doye J P K 1997 J. Phys. Chem. A 101 5111

    [13]

    Cai W S, Shao X G 2002 J. Comput. Chem. 23 427

    [14]

    Shao X G, Cheng L J, Cai W S 2004 J. Chem. Phys. 120 11401

    [15]

    Johnston R L 2003 J. Chem. Soc. Dalton Trans. 22 4193

    [16]

    Doye J P K, Meyer L 2005 Phys. Rev. Lett. 95 063401

    [17]

    Wu X, Liu Q M, Duan R Y, Wei Z 2016 Acta Phys. Sin. 65 210202 (in Chinese) [吴夏, 刘启满, 段仁燕, 魏征 2016 65 210202]

    [18]

    Northby J A 1987 J. Chem. Phys. 87 6166

    [19]

    Xiang Y H, Cheng L J, Cai W S, Shao X G 2004 J. Phys. Chem. A 108 9516

    [20]

    Yang X L, Cai W S, Shao X G 2007 J. Comput. Chem. 28 1427

    [21]

    Shao X G, Yang X L, Cai W S 2008 Chem. Phys. Lett. 460 315

    [22]

    Gupta R P 1981 Phys. Rev. B 23 6265

    [23]

    Cleveland C L, Landman U, Schaaff T G, Shafigullin M N, Stephens P W, Whetten R L 1997 Phys. Rev. Lett. 79 1873

    [24]

    Mantina M, Valero R, Truhlar D G 2009 J. Chem. Phys. 131 064706

    [25]

    Wu X, Wei Z, Liu Q M, Pang T, Wu G H 2016 J. Alloy Compd. 687 115

    [26]

    Darby S, Mortimer-Jones T V, Johnston R L, Roberts C 2002 J. Chem. Phys. 116 1536

    [27]

    Ismail R, Johnston R L 2010 Phys. Chem. Chem. Phys. 12 8607

    [28]

    Rossi G, Ferrano R, Rapallo A, Fortunelli A, Curley B C, Lloyd L D, Johnston R L 2005 J. Chem. Phys. 122 194309

    [29]

    Cheng L J, Cai W S, Shao X G 2004 Chem. Phys. Lett. 389 309

    [30]

    Wu X, Cai W S, Shao X G 2009 J. Comput. Chem. 30 1992

    [31]

    Wu X, Sun Y, Gao Y C, Wu G H 2013 J. Mol. Model. 19 3119

    [32]

    Wu X, Wu G H, Chen Y C, Qiao Y Y 2011 J. Phys. Chem. A 115 13316

    [33]

    Liu D C, Nocedal J 1989 Math. Program 45 503

    [34]

    Wu X, Sun Y, Wei Z, Chen T J 2017 J. Alloy Compd. 701 447

  • [1]

    Sharma S, Kurashiqe W, Nobusada K, Neqishi Y 2015 Nanoscale 7 10606

    [2]

    Zhang M, Zhang J F, Gu T, Zhang H Y, Luo Y H, Cao W 2015 J. Phys. Chem. A 119 3458

    [3]

    Li T J, Sun Y, Zheng J W, Shao G F, Liu T D 2015 Acta Phys. Sin. 64 153601 (in Chinese) [李铁军, 孙跃, 郑骥文, 邵桂芳, 刘暾东 2015 64 153601]

    [4]

    Ma Z N, Jiang M, Wang L 2015 Acta Phys. Sin. 64 187102 (in Chinese) [马振宁, 蒋敏, 王磊 2015 64 187102]

    [5]

    Sattler K, Mhlbach J, Recknagel E 1980 Phys. Rev. Lett. 45 821

    [6]

    Ferrando R, Jellinek J, Johnston R L 2008 Chem. Rev. 108 845

    [7]

    Meitzner G, Via G H, Lytle F W, Sinfelt J H 1985 J. Chem. Phys. 83 4793

    [8]

    Mao H, Huang T, Yu A S 2014 J. Mater. Chem. A 2 16378

    [9]

    Zhang X, Zhang F, Chan K Y 2004 Catal. Commum. 5 749

    [10]

    Wu X, Liu Q M, Sun Y, Wu G H 2015 RSC Adv. 5 51142

    [11]

    Deaven D M, Tit N, Morris J R, Ho K M 1996 Chem. Phys. Lett. 256 195

    [12]

    Wales D J, Doye J P K 1997 J. Phys. Chem. A 101 5111

    [13]

    Cai W S, Shao X G 2002 J. Comput. Chem. 23 427

    [14]

    Shao X G, Cheng L J, Cai W S 2004 J. Chem. Phys. 120 11401

    [15]

    Johnston R L 2003 J. Chem. Soc. Dalton Trans. 22 4193

    [16]

    Doye J P K, Meyer L 2005 Phys. Rev. Lett. 95 063401

    [17]

    Wu X, Liu Q M, Duan R Y, Wei Z 2016 Acta Phys. Sin. 65 210202 (in Chinese) [吴夏, 刘启满, 段仁燕, 魏征 2016 65 210202]

    [18]

    Northby J A 1987 J. Chem. Phys. 87 6166

    [19]

    Xiang Y H, Cheng L J, Cai W S, Shao X G 2004 J. Phys. Chem. A 108 9516

    [20]

    Yang X L, Cai W S, Shao X G 2007 J. Comput. Chem. 28 1427

    [21]

    Shao X G, Yang X L, Cai W S 2008 Chem. Phys. Lett. 460 315

    [22]

    Gupta R P 1981 Phys. Rev. B 23 6265

    [23]

    Cleveland C L, Landman U, Schaaff T G, Shafigullin M N, Stephens P W, Whetten R L 1997 Phys. Rev. Lett. 79 1873

    [24]

    Mantina M, Valero R, Truhlar D G 2009 J. Chem. Phys. 131 064706

    [25]

    Wu X, Wei Z, Liu Q M, Pang T, Wu G H 2016 J. Alloy Compd. 687 115

    [26]

    Darby S, Mortimer-Jones T V, Johnston R L, Roberts C 2002 J. Chem. Phys. 116 1536

    [27]

    Ismail R, Johnston R L 2010 Phys. Chem. Chem. Phys. 12 8607

    [28]

    Rossi G, Ferrano R, Rapallo A, Fortunelli A, Curley B C, Lloyd L D, Johnston R L 2005 J. Chem. Phys. 122 194309

    [29]

    Cheng L J, Cai W S, Shao X G 2004 Chem. Phys. Lett. 389 309

    [30]

    Wu X, Cai W S, Shao X G 2009 J. Comput. Chem. 30 1992

    [31]

    Wu X, Sun Y, Gao Y C, Wu G H 2013 J. Mol. Model. 19 3119

    [32]

    Wu X, Wu G H, Chen Y C, Qiao Y Y 2011 J. Phys. Chem. A 115 13316

    [33]

    Liu D C, Nocedal J 1989 Math. Program 45 503

    [34]

    Wu X, Sun Y, Wei Z, Chen T J 2017 J. Alloy Compd. 701 447

  • [1] 李明飞, 袁梓豪, 刘院省, 邓意成, 王学锋. 光纤相控阵稀疏排布优化算法对比.  , 2021, 70(8): 084205. doi: 10.7498/aps.70.20201768
    [2] 张仁强, 蒋翔宇, 俞炯弛, 曾充, 宫明, 徐顺. 格点量子色动力学蒸馏算法中关联函数的计算优化.  , 2021, 70(16): 161201. doi: 10.7498/aps.70.20210030
    [3] 吴琴菲, 文锦辉. 基于智能搜寻者优化的频率分辨光学开关重构算法.  , 2021, 70(9): 090601. doi: 10.7498/aps.70.20201731
    [4] 刘暾东, 李泽鹏, 季清爽, 邵桂芳, 范天娥, 文玉华. 基于改进Basin-Hopping Monte Carlo算法的Fen-Ptm(5 n+m 24)合金团簇结构优化.  , 2017, 66(5): 053601. doi: 10.7498/aps.66.053601
    [5] 吴夏, 刘启满, 段仁燕, 魏征. 改进的自适应免疫优化算法用于Pd-Pt合金团簇结构快速优化.  , 2016, 65(21): 210202. doi: 10.7498/aps.65.210202
    [6] 李铁军, 孙跃, 郑骥文, 邵桂芳, 刘暾东. 基于遗传算法的Au-Cu-Pt三元合金纳米粒子的稳定结构研究.  , 2015, 64(15): 153601. doi: 10.7498/aps.64.153601
    [7] 宋丹, 樊晓平, 刘钟理. 一种基于非基因信息的免疫记忆优化算法.  , 2015, 64(14): 140203. doi: 10.7498/aps.64.140203
    [8] 李生好, 伍小兵, 黄崇富, 王洪雷. 基于投影纠缠对态算法优化的研究.  , 2014, 63(14): 140501. doi: 10.7498/aps.63.140501
    [9] 刘乐柱, 张季谦, 许贵霞, 梁立嗣, 黄守芳. 一个修改的混沌蚁群优化算法.  , 2013, 62(17): 170501. doi: 10.7498/aps.62.170501
    [10] 高维尚, 邵诚, 高琴. 群体智能优化中的虚拟碰撞:雨林算法.  , 2013, 62(19): 190202. doi: 10.7498/aps.62.190202
    [11] 李恒, 于斌, 陈丹妮, 牛憨笨. 高效双螺旋点扩展函数相位片的设计与实验研究.  , 2013, 62(12): 124201. doi: 10.7498/aps.62.124201
    [12] 李盼池, 王海英, 宋考平, 杨二龙. 量子势阱粒子群优化算法的改进研究.  , 2012, 61(6): 060302. doi: 10.7498/aps.61.060302
    [13] 汪剑波, 卢俊. 双屏频率选择表面结构的遗传算法优化.  , 2011, 60(5): 057304. doi: 10.7498/aps.60.057304
    [14] 刘扬正, 林长圣, 李心朝. 新的具有光滑二次函数混沌系统的构建与实现.  , 2011, 60(6): 060507. doi: 10.7498/aps.60.060507
    [15] 鄂箫亮, 段海明. 利用Gupta势结合遗传算法研究ConCu55-n(n=0—55)混合团簇的结构演化及基态能量.  , 2010, 59(8): 5672-5680. doi: 10.7498/aps.59.5672
    [16] 钟会林, 吴福根, 姚立宁. 遗传算法在二维声子晶体带隙优化中的应用.  , 2006, 55(1): 275-280. doi: 10.7498/aps.55.275
    [17] 李萍剑, 张文静, 张琦锋, 吴锦雷. 接触电极的功函数对基于碳纳米管构建的场效应管的影响.  , 2006, 55(10): 5460-5465. doi: 10.7498/aps.55.5460
    [18] 郭建军, 杨继先, 迭 东, 于桂凤, 蒋 刚. Pd-Y微团簇的结构与性质研究.  , 2005, 54(8): 3571-3577. doi: 10.7498/aps.54.3571
    [19] 贾金锋, 董国材, 王立莉, 马旭村, 薛其坤, Y. Hasegawa T. Sakurai. 局域功函数图像及其在Cu(111)-Au/Pd表面的应用.  , 2005, 54(4): 1513-1527. doi: 10.7498/aps.54.1513
    [20] 徐毅, 潘正瑛, 王月霞. 低能CU6团簇在CU(001)表面和AU(001)表面沉积的分子动力学模拟研究.  , 2001, 50(1): 88-94. doi: 10.7498/aps.50.88
计量
  • 文章访问数:  6512
  • PDF下载量:  132
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-23
  • 修回日期:  2017-05-02
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map