搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fe3O4单晶薄膜磁性电场调控的微磁学仿真研究

杨芝 张悦 周倩倩 王玉华

引用本文:
Citation:

Fe3O4单晶薄膜磁性电场调控的微磁学仿真研究

杨芝, 张悦, 周倩倩, 王玉华

Electric-field control of magnetic properties of Fe3O4 single-crystal film investigated by micro-magnetic simulation

Yang Zhi, Zhang Yue, Zhou Qian-Qian, Wang Yu-Hua
PDF
导出引用
  • 磁性薄膜磁学特性电场调控的相关研究对开发新型低功耗磁信息器件具有突出意义.本文基于电场调控磁性的基本理论,以OOMMF (Object Oriented Micro-Magnetic Frame)微磁学仿真软件为工具,研究了电场对生长于PZN-PT单晶衬底上Fe3O4单晶薄膜磁学特性的调控.研究结果显示:无外加电场时,薄膜表现出典型的软磁特性;沿衬底[001]方向施加的外加电场可以使得薄膜矫顽力、矩形比等磁学特性发生显著改变:当外加磁场沿[100]([010])时,施加正值(负值)电场强度可以显著增大薄膜的矫顽力与矩形比,当电场强度不小于0.6 MV/m时薄膜矩形比达到1.这是因为外加电场导致薄膜产生单轴应力各向异性,使得薄膜的等效磁各向异性发生了从无外电场下的面内四重磁晶各向异性向高电场下的近似单轴磁各向异性的过渡.外加1 MV/m与-1 MV/m的电场时等效易磁化轴分别沿[100]与[010]方向.另外,外加1 MV/m (-1 MV/m)的电场强度可以使得铁磁共振的频率增大(减小)接近1 GHz.
    Control of magnetic properties by an applied electric field has significant potential applications in the field of novel magnetic information devices,with some advantages such as low dissipation and small sizes.Till now,many scientific and technical problems in this field have been widely investigated theoretically and experimentally.However,a lacuna still exists in the papers concerning the investigations performed by micromagnetic simulation which is a powerful tool for revealing magnetic behaviors in a complicated magnetic system.Based on the basic principle for electric-field manipulation of magnetic properties,we study the electric-field control of magnetic properties of a square-shaped singlecrystal Fe3O4 thin film formed on a single-crystal PZN-PT piezoelectric substrate by the micromagnetic simulation method via object oriented micro-magnetic frame (OOMMF),a software for micromagnetic simulation.The magnetic hysteresis loops are collected for the Fe3O4/PZN-PT composite system under magnetic fields applied in the[100]and[010]crystallographic directions of Fe3O4 and an electric field applied along the[001]axis of the PZN-PT substrate. The applied electric field acts as an stress anisotropy energy.The result of our simulation is similar to the reported result of an experimental investigation for the same system and is consistent with that of our theoretical analysis based on a thermodynamic route.The results reveal that the film exhibits typical soft-magnetic behavior without applying an electric field.When an electric field is applied to the PZN-PT substrate,the coercivity and squareness ratio of Fe3O4 is greatly affected.Under an external magnetic field along the[100]axis of Fe3O4,the applying of a positive electric field clearly enhances the coercivity and squareness ratio.On the other hand,when an external magnetic field is applied along the[010]direction of Fe3O4,the coercivity and squareness ratio is increased by applying a negative electric field.In both cases,the coercivity and squareness ratio reaches 1 when the absolute value of E is 0.6 MV/m or larger.This high coercivity and squareness ratio is vital to magnetic information memory.These results are attributed to the competition between an electric-field-induced uni-axial stress anisotropy energy and the intrinsic in-plane four-fold magnetocrystalline anisotropy energy of a Fe3O4 thin film.When the absolute value of E is sufficiently large (1 MV/m), the electric-field-induced stress anisotropic energy significantly overweighs the intrinsic magnetocrystalline anisotropy energy,and the Fe3O4 thin film exhibits an approximate uniaxial magnetic anisotropy energy.Under the electric fields of 1-MV/m and -1-MV/m,the effective easy axis is along the[100]and[010]direction of the Fe3O4 thin film,respectively. Additionally,we also find that applying a 1-MV/m (-1-MV/m) electric-field can cause the frequency for ferromagnetic resonance to increase (reduce) almost 1 GHz,offering the possibility of developing a microwave device with tunable frequency.
      通信作者: 王玉华, wangyuhua@wust.edu.cn
    • 基金项目: 武汉科技大学城市学院博士基金(批准号:2014CYBSKY003)和国家自然科学基金(批准号:11574096)资助的课题.
      Corresponding author: Wang Yu-Hua, wangyuhua@wust.edu.cn
    • Funds: Project supported by the Ph.D.Programs Foundation of City College,Wuhan University of Science and Technology,China (Grant No.2014CYBSKY003),and the National Natural Science Foundation of China (Grant No.11574096).
    [1]

    Hu J M, Ma J, Wang J, Li Z, Lin Y H, Nan C W 2011 J. Adv. Diel. 1 1

    [2]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519

    [3]

    Hu J M, Chen L Q, Nan C W 2016 Adv. Mater. 28 15

    [4]

    Sun N X, Srinivasan G 2012 SPIN 2 1240004

    [5]

    Liu M, Sun N X 2014 Phil. Trans. R. Soc. A 372 20120439

    [6]

    Luo M, Zhou P H, Liu Y F, Wang X, Xie J L 2017 Mater. Lett. 188 188

    [7]

    Liu M, Li S, Obi O, Lou J, Rand S, Sun N X 2011 Appl. Phys. Lett. 98 222509

    [8]

    Giang D T H, Thuc V N, Duc N H 2012 J. Magn. Magn. Mater. 324 2019

    [9]

    Li P S, Chen A T, Li D L, Zhao Y G, Zhang S, Yang L F, Liu Y, Zhu M H, Zhang H Y, Han X F 2014 Adv. Mater. 26 4320

    [10]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W S, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378

    [11]

    Grezes C, Ebrahimi F, Alzate J G, Cai X, Katine J A, Langer J, Ocker B, Khalili Amiri P, Wang K L 2016 Appl. Phys. Lett. 108 012403

    [12]

    Yoshida C, Noshiro H, Yamazaki Y, Sugii T, Furuya A, Ataka T, Tanaka T, Uehara Y 2016 AIP Adv. 6 055816

    [13]

    Wang K L, Alzate J G, Khalili Amiri P 2013 J. Phys. D:Appl. Phys. 46 074003

    [14]

    Lin W, Vernier N, Agnus G, Garcia K, Ocker B, Zhao W, Fullerton E E, Ravelosona D 2016 Nat. Commun. 7 13532

    [15]

    Sekine A, Chiba T 2017 AIP Adv. 7 055902

    [16]

    Ibrahim F, Yang H X, Hallal A, Dieny B, Chshiev M 2016 Phys. Rev. B 93 014429

    [17]

    Park K W, Park J Y, Baek S H C, Kim D H, Seo S M, Chung S W, Park B G 2016 Appl. Phys. Lett. 109 012405

    [18]

    Liu Y, Hu F X, Zhang M, Wang J, Shen F R, Zuo W L, Zhang J, Sun J R, Shen B G 2017 Appl. Phys. Lett. 110 022401

    [19]

    Zhang X, Wang C, Liu Y, Zhang Z, Jin Q Y, Duan C G 2016 Sci. Rep. 6 18719

    [20]

    Zhu W, Xiao D, Liu Y, Gong S J, Duan C G 2014 Sci. Rep. 4 4117

    [21]

    Yang C C, Wang F L, Zhang C, Zhou C, Jiang C J 2015 J. Phys. D:Appl. Phys. 48 435001

    [22]

    Taniyama T 2015 J. Phys. Condens. Mat. 27 504001

    [23]

    Hu J M, Nan C W 2009 Phys. Rev. B 80 224416

    [24]

    Li N, Liu M, Zhou Z Y, Sun N X, Murthy D V B, Srinivasan G, Klein T M, Petrov V M, Gupta A 2011 Appl. Phys. Lett. 99 192502

    [25]

    Lei N, Park S, Lecoeur P, Ravelosona D, Chappert C, Stelmakhovych O, Holy V 2011 Phys. Rev. B 84 012404

    [26]

    Liu M F, Hao L, Jin T L, Cao J W, Bai J M, Wu D P, Wang Y, Wei F L 2015 Appl. Phys. Express 8 063006

    [27]

    Lebedev G A, Viala B, Lafont T, Zakharov D I, Cugat O, Delamare J 2011 Appl. Phys. Lett. 99 232502

    [28]

    Rizwan S, Yu G Q, Zhang S, Zhao Y G, Han X F 2012 J. Appl. Phys. 112 064120

    [29]

    Liu M, Obi O, Cai Z H, Lou J, Yang G M, Ziemer K S, Sun N X 2010 J. Appl. Phys. 107 073916

    [30]

    Zhou H M, Chen Q, Deng J H 2014 Chin. Phys. B 23 047502

    [31]

    Zhang Y, Zhou Q Q, Ding J J, Yang Z, Zhu B P, Yang X F, Chen S, Ouyang J 2015 J. Appl. Phys. 117 124105

    [32]

    Liu M, Obi O, Lou J, Chen Y J, Cai Z H, Stoute S, Espanol M, Lew M, Situ X D, Ziemer K S, Harris V G, Sun N X 2009 Adv. Funct. Mater. 19 1826

    [33]

    Zhu J G, Neal Bertram H 1988 J. Appl. Phys. 63 3248

  • [1]

    Hu J M, Ma J, Wang J, Li Z, Lin Y H, Nan C W 2011 J. Adv. Diel. 1 1

    [2]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519

    [3]

    Hu J M, Chen L Q, Nan C W 2016 Adv. Mater. 28 15

    [4]

    Sun N X, Srinivasan G 2012 SPIN 2 1240004

    [5]

    Liu M, Sun N X 2014 Phil. Trans. R. Soc. A 372 20120439

    [6]

    Luo M, Zhou P H, Liu Y F, Wang X, Xie J L 2017 Mater. Lett. 188 188

    [7]

    Liu M, Li S, Obi O, Lou J, Rand S, Sun N X 2011 Appl. Phys. Lett. 98 222509

    [8]

    Giang D T H, Thuc V N, Duc N H 2012 J. Magn. Magn. Mater. 324 2019

    [9]

    Li P S, Chen A T, Li D L, Zhao Y G, Zhang S, Yang L F, Liu Y, Zhu M H, Zhang H Y, Han X F 2014 Adv. Mater. 26 4320

    [10]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W S, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378

    [11]

    Grezes C, Ebrahimi F, Alzate J G, Cai X, Katine J A, Langer J, Ocker B, Khalili Amiri P, Wang K L 2016 Appl. Phys. Lett. 108 012403

    [12]

    Yoshida C, Noshiro H, Yamazaki Y, Sugii T, Furuya A, Ataka T, Tanaka T, Uehara Y 2016 AIP Adv. 6 055816

    [13]

    Wang K L, Alzate J G, Khalili Amiri P 2013 J. Phys. D:Appl. Phys. 46 074003

    [14]

    Lin W, Vernier N, Agnus G, Garcia K, Ocker B, Zhao W, Fullerton E E, Ravelosona D 2016 Nat. Commun. 7 13532

    [15]

    Sekine A, Chiba T 2017 AIP Adv. 7 055902

    [16]

    Ibrahim F, Yang H X, Hallal A, Dieny B, Chshiev M 2016 Phys. Rev. B 93 014429

    [17]

    Park K W, Park J Y, Baek S H C, Kim D H, Seo S M, Chung S W, Park B G 2016 Appl. Phys. Lett. 109 012405

    [18]

    Liu Y, Hu F X, Zhang M, Wang J, Shen F R, Zuo W L, Zhang J, Sun J R, Shen B G 2017 Appl. Phys. Lett. 110 022401

    [19]

    Zhang X, Wang C, Liu Y, Zhang Z, Jin Q Y, Duan C G 2016 Sci. Rep. 6 18719

    [20]

    Zhu W, Xiao D, Liu Y, Gong S J, Duan C G 2014 Sci. Rep. 4 4117

    [21]

    Yang C C, Wang F L, Zhang C, Zhou C, Jiang C J 2015 J. Phys. D:Appl. Phys. 48 435001

    [22]

    Taniyama T 2015 J. Phys. Condens. Mat. 27 504001

    [23]

    Hu J M, Nan C W 2009 Phys. Rev. B 80 224416

    [24]

    Li N, Liu M, Zhou Z Y, Sun N X, Murthy D V B, Srinivasan G, Klein T M, Petrov V M, Gupta A 2011 Appl. Phys. Lett. 99 192502

    [25]

    Lei N, Park S, Lecoeur P, Ravelosona D, Chappert C, Stelmakhovych O, Holy V 2011 Phys. Rev. B 84 012404

    [26]

    Liu M F, Hao L, Jin T L, Cao J W, Bai J M, Wu D P, Wang Y, Wei F L 2015 Appl. Phys. Express 8 063006

    [27]

    Lebedev G A, Viala B, Lafont T, Zakharov D I, Cugat O, Delamare J 2011 Appl. Phys. Lett. 99 232502

    [28]

    Rizwan S, Yu G Q, Zhang S, Zhao Y G, Han X F 2012 J. Appl. Phys. 112 064120

    [29]

    Liu M, Obi O, Cai Z H, Lou J, Yang G M, Ziemer K S, Sun N X 2010 J. Appl. Phys. 107 073916

    [30]

    Zhou H M, Chen Q, Deng J H 2014 Chin. Phys. B 23 047502

    [31]

    Zhang Y, Zhou Q Q, Ding J J, Yang Z, Zhu B P, Yang X F, Chen S, Ouyang J 2015 J. Appl. Phys. 117 124105

    [32]

    Liu M, Obi O, Lou J, Chen Y J, Cai Z H, Stoute S, Espanol M, Lew M, Situ X D, Ziemer K S, Harris V G, Sun N X 2009 Adv. Funct. Mater. 19 1826

    [33]

    Zhu J G, Neal Bertram H 1988 J. Appl. Phys. 63 3248

  • [1] 俞葆青, 夏兵, 杨晓砚, 万宝全, 查俊伟. 高压直流电缆聚丙烯绝缘电场调控.  , 2023, 72(6): 068402. doi: 10.7498/aps.72.20222320
    [2] 王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽. 过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究.  , 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [3] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质.  , 2019, 68(2): 027401. doi: 10.7498/aps.68.20180957
    [4] 李蕾, 张程宾. 电场对协流式微流控装置中乳液液滴生成行为的调控机理.  , 2018, 67(17): 176801. doi: 10.7498/aps.67.20180616
    [5] 杨虹, 齐伟华, 纪登辉, 尚志丰, 张晓云, 徐静, 郎莉莉, 唐贵德. 钙钛矿锰氧化物La2/3Sr1/3FexMn1-xO3的结构与磁性研究.  , 2014, 63(8): 087503. doi: 10.7498/aps.63.087503
    [6] 张嵩波, 王方标, 李发铭, 温戈辉. 高温高压方法合成碳包覆-Fe2O3纳米棒及其磁学性能.  , 2014, 63(10): 108101. doi: 10.7498/aps.63.108101
    [7] 万素磊, 何利民, 向俊尤, 王志国, 邢茹, 张雪峰, 鲁毅, 赵建军. 钙钛矿型锰氧化物(La0.8Eu0.2)4/3Sr5/3Mn2O7的磁性和电性研究.  , 2014, 63(23): 237501. doi: 10.7498/aps.63.237501
    [8] 何利民, 冀钰, 鲁毅, 吴鸿业, 张雪峰, 赵建军. 钙钛矿锰氧化物(La1-xEux)4/3Sr5/3Mn2O7(x=0, 0.15)的磁性和电性研究.  , 2014, 63(14): 147503. doi: 10.7498/aps.63.147503
    [9] 李诚迪, 赵敬龙, 仲崇贵, 董正超, 方靖淮. 量子顺电EuTiO3材料基态磁性的第一性原理研究.  , 2014, 63(8): 087502. doi: 10.7498/aps.63.087502
    [10] 汪冬冬, 高辉. 三维自组装Eu3+-石墨烯复合材料的制备及其磁性研究.  , 2013, 62(18): 188102. doi: 10.7498/aps.62.188102
    [11] 高潭华, 卢道明, 吴顺情, 朱梓忠. Fe原子薄片的磁性:第一性原理计算.  , 2011, 60(4): 047502. doi: 10.7498/aps.60.047502
    [12] 吕庆荣, 方庆清, 刘艳美. 纳米结构CoxFe3-xO4多孔微球的磁性及交换偏置效应研究.  , 2011, 60(4): 047501. doi: 10.7498/aps.60.047501
    [13] 徐本富, 杨传路, 童小菲, 王美山, 马晓光, 王德华. FenO+m(n+m=4)团簇的构型、电子结构特征和磁性.  , 2010, 59(11): 7845-7849. doi: 10.7498/aps.59.7845
    [14] 刘锦宏, 张凌飞, 田庚方, 李济晨, 李发伸. 低温固相反应法制备的NiFe2O4纳米颗粒的结构与磁性.  , 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [15] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究.  , 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [16] 庞利佳, 孙光飞, 陈菊芳, 强文江, 张锦标, 黎文安. 纳米晶复合Pr2Fe14B/α-Fe永磁材料磁性的研究.  , 2006, 55(6): 3049-3053. doi: 10.7498/aps.55.3049
    [17] 符秀丽, 王 懿, 李培刚, 陈雷明, 张海英, 涂清云, Li L. H., 唐为华. 大规模制备Ni80Fe20纳米线阵列及其磁学特性研究.  , 2005, 54(4): 1693-1696. doi: 10.7498/aps.54.1693
    [18] 郭鸿涌, 刘宝丹, 唐宁, 罗鸿志, 李养贤, 杨伏明, 吴光恒. Co和稳定元素对Nd3(Fe,Co,M)29(M=Ti,V,Cr) 化合物结构和磁性的影响.  , 2004, 53(1): 189-193. doi: 10.7498/aps.53.189
    [19] 汪金芝, 方庆清. 纳米Zn0.6CoxFe2.4-xO4晶粒的结构相变与磁性研究.  , 2004, 53(9): 3186-3190. doi: 10.7498/aps.53.3186
    [20] 鲁 毅, 李庆安, 邸乃力, 成昭华, 薛艳杰, 张 莉, 陈 娜, 肖红文, 张百生, 陈东凤. Nd0.5Sr0.4Pb0.1MnO3的结构和磁性.  , 2003, 52(8): 2057-2060. doi: 10.7498/aps.52.2057
计量
  • 文章访问数:  6826
  • PDF下载量:  336
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-09
  • 修回日期:  2017-04-24
  • 刊出日期:  2017-07-05

/

返回文章
返回
Baidu
map