搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于广义Duffing振子的水中弱目标检测方法

姚海洋 王海燕 张之琛 申晓红

引用本文:
Citation:

一种基于广义Duffing振子的水中弱目标检测方法

姚海洋, 王海燕, 张之琛, 申晓红

A method of detecting underwater weak target based on generalized Duffing oscillator

Yao Hai-Yang, Wang Hai-Yan, Zhang Zhi-Chen, Shen Xiao-Hong
PDF
导出引用
  • 海洋环境中,在水下目标的线谱频率未知或者目标辐射噪声的连续谱很弱时,很难实现水中弱目标的准确检测,本文提出基于广义Duffing振子检测系统的水下目标辐射噪声检测方法.通过对传统周期扰动的Duffing振子信号检测系统的分析和推广,提出了一种可输入非周期、非平稳信号的广义Duffing振子检测系统,可检测输入的无先验信息目标信号.为实现广义Duffing振子系统运动状态的精确、有效判断,提出了一种相空间图形的离散分布列计算方法,通过类网格函数实现了利用统计复杂度对系统输出的嵌入式表征,从而实现了无先验信息时的水中弱目标的嵌入式检测.相同条件下与传统检测方法仿真对比可知,本文提出的方法可以检测到更低信噪比下的目标,并能满足水中检测实时性要求.
    In the marine environment, when the line spectra of underwater target radiated signal are unknown or the continuous spectra are weak, it is extremely hard to accurately detect the underwater weak target. The line spectrum based method commonly requires spectrum information for detection, and the continuous spectrum based energy method is hard to achieve accurate detection in long distance. In this paper, an underwater radiated noise detection method based on generalized Duffing oscillator detection system is proposed. Firstly, a generalized Duffing oscillator detection system for non-periodic and non-stationary input signal is proposed through deducing the traditional Duffing oscillator detection system that is perturbed by periodic signal. And the proposed generalized Duffing oscillator detection system is able to detect the signals of targets without needing prior information. Secondly, when the target radiated signal (non-periodic and non-stationary signal) is input into the generalized Duffing oscillator, a special form of output phase space (a special state of motion) is discovered and the differences in output phase space among different input signals (periodic stationary signals, nonperiodic non-stationary signals and the target radiated signals) are analyzed. It is found that the special phase space has different form from the output phase spaces of other kinds of signals; accordingly the underwater targets can be detected through the representation of the difference between special phase space and ordinary phase space. Thirdly, a discrete distribution sequence calculation method based on phase space is proposed for the precise and efficient judgment of system motion. The proposed calculation method defines a similar-grid function, based on which, the distribution sequence calculation method of output phase space is deduced, and the distribution sequences of different kinds of output phase spaces are calculated. The method realizes an embedded expression of system output by using the statistical complexity, therefore achieving the embedded underwater target detection when the line spectra of underwater target radiated signal are unknown or the continuous spectra are weak. The analysis result indicates that the method is of low-computation. Finally, the experimental results in the sea are described and the lowest signalto-noise ratio (SNR) of the method is calculated to be -9.133 dB. Simulation and experimental results have shown that the proposed method can detect target successfully in a lower SNR than traditional detection method, and the real-time performance can meet the demand for underwater detection. The method in this paper provides new ideas and ways of thinking for underwater target detection, and has very important reference value for low SNR long-distance target detection under real condition.
      通信作者: 王海燕, hyang@mail.nwpu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61571365)资助的课题.
      Corresponding author: Wang Hai-Yan, hyang@mail.nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61571365).
    [1]

    Li Q H, Li M, Yang X T 2008 Acta Acoust. 33 193 (in Chinese) [李启虎, 李敏, 杨秀庭 2008 声学学报 33 193]

    [2]

    Li Q H, Li M, Yang X T 2008 Acta Acoust. 33 289 (in Chinese) [李启虎, 李敏, 杨秀庭 2008 声学学报 33 289]

    [3]

    Antoni J, Hanson D 2012 IEEE J. Ocean. Eng. 37 478

    [4]

    Zhou G L, Li G H, Cheng J 2009 Comput. Simulat. 7 337 (in Chinese) [周关林, 李钢虎, 成静 2009 计算机仿真 7 337]

    [5]

    Liu H B, Wu D W, Jin W, Wang Y Q 2013 Acta Phys. Sin. 62 050501 (in Chinese) [刘海波, 吴德伟, 金伟, 王永庆 2013 62 050501]

    [6]

    Cong C, Li X K, Song Y 2014 Acta Phys. Sin. 63 064301 (in Chinese) [丛超, 李秀坤, 宋扬 2014 63 064301]

    [7]

    Zhang X Y, Luo L Y 2015 Acta Acoust. 40 511 (in Chinese) [张晓勇, 罗来源 2015 声学学报 40 511]

    [8]

    Kedar S 2011 Comptes Rendus Geosci. 343 548

    [9]

    Cato D H 2012 AIP Conf. Proc. 1495 242

    [10]

    Hinich M J, Marandino D, Sullivan E J 1989 J. Acoust. Soc. Am. 85 1512

    [11]

    Lai Z H, Leng Y G, Sun J Q, Fan S B 2012 Acta Phys. Sin. 61 050503 (in Chinese) [赖志慧, 冷永刚, 孙建桥, 范胜波 2012 61 050503]

    [12]

    He M J, Xu W, Sun Z K 2014 Sci. Sin.: Phys. Mech. Astron. 44 981 (in Chinese) [何美娟, 徐伟, 孙中奎 2014 中国科学: 物理学 力学 天文学 44 981]

    [13]

    Bao F, Li C, Wang X, Wang Q, Du S 2010 J. Acoust. Soc. Am. 128 206

    [14]

    Li Y, Shi Y W, Ma H T, Yang B J 2004 Acta Electron. Sin. 32 87 (in Chinese) [李月, 石要武, 马海涛, 杨宝俊 2004 电子学报 32 87]

    [15]

    Lorenz E N 1995 The Essence of Chaos (Seattle: University of Washington Press) p186

    [16]

    Chen G, Lai D 1998 Int. J. Bifurcat. Chaos 8 1585

    [17]

    Xue Y J, Yang S Y 2003 Chaos Soliton. Fract. 17 717

    [18]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [19]

    Grassberger P, Procaccia I 2004 The Theory of Chaotic Attractors (New York: Springer) pp189-208

  • [1]

    Li Q H, Li M, Yang X T 2008 Acta Acoust. 33 193 (in Chinese) [李启虎, 李敏, 杨秀庭 2008 声学学报 33 193]

    [2]

    Li Q H, Li M, Yang X T 2008 Acta Acoust. 33 289 (in Chinese) [李启虎, 李敏, 杨秀庭 2008 声学学报 33 289]

    [3]

    Antoni J, Hanson D 2012 IEEE J. Ocean. Eng. 37 478

    [4]

    Zhou G L, Li G H, Cheng J 2009 Comput. Simulat. 7 337 (in Chinese) [周关林, 李钢虎, 成静 2009 计算机仿真 7 337]

    [5]

    Liu H B, Wu D W, Jin W, Wang Y Q 2013 Acta Phys. Sin. 62 050501 (in Chinese) [刘海波, 吴德伟, 金伟, 王永庆 2013 62 050501]

    [6]

    Cong C, Li X K, Song Y 2014 Acta Phys. Sin. 63 064301 (in Chinese) [丛超, 李秀坤, 宋扬 2014 63 064301]

    [7]

    Zhang X Y, Luo L Y 2015 Acta Acoust. 40 511 (in Chinese) [张晓勇, 罗来源 2015 声学学报 40 511]

    [8]

    Kedar S 2011 Comptes Rendus Geosci. 343 548

    [9]

    Cato D H 2012 AIP Conf. Proc. 1495 242

    [10]

    Hinich M J, Marandino D, Sullivan E J 1989 J. Acoust. Soc. Am. 85 1512

    [11]

    Lai Z H, Leng Y G, Sun J Q, Fan S B 2012 Acta Phys. Sin. 61 050503 (in Chinese) [赖志慧, 冷永刚, 孙建桥, 范胜波 2012 61 050503]

    [12]

    He M J, Xu W, Sun Z K 2014 Sci. Sin.: Phys. Mech. Astron. 44 981 (in Chinese) [何美娟, 徐伟, 孙中奎 2014 中国科学: 物理学 力学 天文学 44 981]

    [13]

    Bao F, Li C, Wang X, Wang Q, Du S 2010 J. Acoust. Soc. Am. 128 206

    [14]

    Li Y, Shi Y W, Ma H T, Yang B J 2004 Acta Electron. Sin. 32 87 (in Chinese) [李月, 石要武, 马海涛, 杨宝俊 2004 电子学报 32 87]

    [15]

    Lorenz E N 1995 The Essence of Chaos (Seattle: University of Washington Press) p186

    [16]

    Chen G, Lai D 1998 Int. J. Bifurcat. Chaos 8 1585

    [17]

    Xue Y J, Yang S Y 2003 Chaos Soliton. Fract. 17 717

    [18]

    Bandt C, Pompe B 2002 Phys. Rev. Lett. 88 174102

    [19]

    Grassberger P, Procaccia I 2004 The Theory of Chaotic Attractors (New York: Springer) pp189-208

  • [1] 李荣凤, 高树超, 肖朝凡, 徐智怡, 薛兴泰, 刘建波, 赵研英, 陈佳洱, 卢海洋, 颜学庆. 激光尾波场驱动准连续小角度电子束研究进展.  , 2017, 66(15): 154101. doi: 10.7498/aps.66.154101
    [2] 周洁, 杨双波. 周期受击陀螺系统随时间演化波函数的多重分形.  , 2015, 64(20): 200505. doi: 10.7498/aps.64.200505
    [3] 范洪义. 相干态在参数量子相空间的两维正态分布.  , 2014, 63(2): 020302. doi: 10.7498/aps.63.020302
    [4] 周洁, 杨双波. 周期受击陀螺系统波函数的分形.  , 2014, 63(22): 220507. doi: 10.7498/aps.63.220507
    [5] 王廷志, 孙现亭, 韩月林. 相空间中相对运动完整力学系统的共形不变性与守恒量.  , 2014, 63(10): 104502. doi: 10.7498/aps.63.104502
    [6] 陈云飞, 李桂娟, 王振山, 张明伟, 贾兵. 水中目标回波亮点统计特征研究.  , 2013, 62(8): 084302. doi: 10.7498/aps.62.084302
    [7] 徐学翔, 张英孔, 张浩亮, 陈媛媛. N00N态的Wigner函数及N00N态作为输入的量子干涉.  , 2013, 62(11): 114204. doi: 10.7498/aps.62.114204
    [8] 路凯, 方建会, 张明江, 王鹏. 相空间中离散完整系统的Noether对称性和Mei对称性.  , 2009, 58(11): 7421-7425. doi: 10.7498/aps.58.7421
    [9] 敬晓丹, 吕 翎. 相空间压缩实现时空混沌系统的广义同步.  , 2008, 57(8): 4766-4770. doi: 10.7498/aps.57.4766
    [10] 刘仰魁, 方建会. 相空间中变质量力学系统Lie-Mei对称性的两个守恒量.  , 2008, 57(11): 6699-6703. doi: 10.7498/aps.57.6699
    [11] 夏丽莉, 李元成. 相空间中非完整可控力学系统的对称性摄动与绝热不变量.  , 2007, 56(11): 6183-6187. doi: 10.7498/aps.56.6183
    [12] 张 毅. 相空间中离散力学系统对称性的摄动与Hojman型绝热不变量.  , 2007, 56(4): 1855-1859. doi: 10.7498/aps.56.1855
    [13] 袁通全. 一类相空间中的准几率分布函数系.  , 2006, 55(10): 5014-5017. doi: 10.7498/aps.55.5014
    [14] 方建会, 王 鹏, 丁 宁. 相空间中力学系统的Lie-Mei对称性.  , 2006, 55(8): 3821-3824. doi: 10.7498/aps.55.3821
    [15] 方建会, 廖永潘, 彭 勇. 相空间中力学系统的两类Mei对称性及守恒量.  , 2005, 54(2): 500-503. doi: 10.7498/aps.54.500
    [16] 张 毅. 相空间中单面完整约束力学系统的对称性与守恒量.  , 2005, 54(10): 4488-4495. doi: 10.7498/aps.54.4488
    [17] 楼智美. 相空间中二阶线性非完整系统的形式不变性.  , 2004, 53(7): 2046-2049. doi: 10.7498/aps.53.2046
    [18] 方建会, 张鹏玉. 相空间中变质量力学系统的Hojman守恒量.  , 2004, 53(12): 4041-4044. doi: 10.7498/aps.53.4041
    [19] 陈培胜, 方建会. 相空间中非完整非保守系统的形式不变性.  , 2003, 52(5): 1044-1047. doi: 10.7498/aps.52.1044
    [20] 刘海峰, 代正华, 陈峰, 龚欣, 于遵宏. 混沌动力系统小波变换模数的关联维数.  , 2002, 51(6): 1186-1192. doi: 10.7498/aps.51.1186
计量
  • 文章访问数:  6057
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-24
  • 修回日期:  2017-03-26
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map