搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

环形光束锥形衍射出射光场偏振特性及光场调控

杜闯 贾大功 张红霞 刘铁根 张以谟

引用本文:
Citation:

环形光束锥形衍射出射光场偏振特性及光场调控

杜闯, 贾大功, 张红霞, 刘铁根, 张以谟

Polarization characteristic and control of the conical diffracted output field under annular beam

Du Chuang, Jia Da-Gong, Zhang Hong-Xia, Liu Tie-Gen, Zhang Yi-Mo
PDF
导出引用
  • 环形光束的锥形衍射效应对于微粒的操控具有重要的应用价值.本文建立了环状高斯光束的锥形衍射模型,并基于Berry理论给出了线偏振态下环形光束锥形衍射出射光场的计算公式.理论仿真了环状光锥形衍射出射光场的偏振特性,得出环光锥形衍射出射光场的内、外亮环具有相互正交的偏振分布特性.搭建了线偏振态下环状高斯光锥形衍射的实验系统,实验验证了出射光场的偏振特性.针对环形光束锥形衍射出射光场具备的偏振特性,设计了一种组合偏振片,理论和实验研究了该组合偏振片对环光锥形衍射出射光场的调控.结果表明,随着组合偏振片方位角的变化,锥形衍射出射光场的内、外环强度发生周期性的变化.
    Conical diffraction, a unique optical phenomenon in biaxial crystal, has important applications for the manipulation of particles. In this paper, a new model of annular Gaussian beam is constructed based on the Tovar's flat-topped multi-Gaussian laser beams. The conical diffraction of annular Gaussian beam is calculated using Belsky-Khapalyuk-Berry theory. The polarization characteristics of conical diffracted output beams under the annular Gaussian beam are theoretically calculated and experimentally demonstrated by means of the linearly polarized annular Gaussian beams with different polarization directions. It is found that the same azimuth angles of the inner and outer rings of the conical diffracted output beams have orthogonal polarization characteristics. A combined polarizer (CP) composed of eight polarizing segments with different specific pass axes of polarization is presented to simulate the polarization characteristic of the optical field of conical diffraction. Furthermore the calculations for output-field control of conical diffraction under the annular beam by using the proposed CP are compared with the experimental results. The results show that the intensities of both the inner and outer rings are periodically varied with CP azimuth angle. And when the azimuth angle of CP is 0, only the conical diffracted outer ring is remained, while only the inner ring of conical diffraction is remained for 180. This tunable conical diffracted field has important applications in optical tweezers and wavelength division multiplexing.
      通信作者: 贾大功, dagongjia@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61377077)和国家重点基础研究发展计划(批准号:2014CB340103)资助的课题.
      Corresponding author: Jia Da-Gong, dagongjia@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61377077) and the National Basic Research Program of China (Grant No. 2014CB340103).
    [1]

    Lloyd H 1831 Lond. Edinb. Phil. Mag. 2 112

    [2]

    Born M, Wolf E 1999 Principles of Optics (seventh expanded edition) (Cambridge: Cambridge University Press) p904

    [3]

    Lunney J G, Weaire D 2006 Europhys. News 37 26

    [4]

    Belskii A M, Khapalyuk A P 1978 Opt. Spectrosc. 44 436

    [5]

    Poggendorff J C 1839 Pogg. Ann. 48 461

    [6]

    Voigt W 1905 Ann. Phys. Berlin 323 645

    [7]

    Raman C V, Rajagopalan V S, Nedungadi T M K 1941 Proc. Math. Sci. 14 221

    [8]

    Portigal D L, Burstein E 1969 J. Opt. Soc. Am. 59 1567

    [9]

    Berry M V 2004 J. Opt. A: Pure Appl. Opt. 6 289

    [10]

    Turpin A, Loiko Y V, Kalkandkiev T K, Tomizawa H, Mompart J 2014 Opt. Lett. 39 4349

    [11]

    O'Dwyer D P, Phelan C F, Rakovich Y P, Eastham P R, Lunney J G, Donegan J F 2011 Opt. Express 19 2580

    [12]

    Darcy R T, McCloskey D, Ballantine K E, Jennings B D, Lunney J G, Eastham P R, Donegan J F 2013 Opt. Express 21 20394

    [13]

    Grant S D, Zolotovskaya S A, Gillespie W A, Kalkandjiev T K, Abdolvand A 2014 Opt. Lett. 39 1988

    [14]

    Peet V 2014 J. Opt. 16 075702

    [15]

    Turpin A, Loiko Y V, Kalkandjiev T K, Corbaln R, Mompart J 2015 Phys. Rev. A 92 013802

    [16]

    Wu F T, Jiang X G, Liu B, Qiu Z X 2009 Acta Phys. Sin. 58 2410 (in Chinese) [吴逢铁, 江新光, 刘彬, 邱振兴 2009 58 2410]

    [17]

    Zhu Q C, Wu F T, Hu R, Feng C 2016 Acta Phys. Sin. 65 184101 (in Chinese) [朱清智, 吴逢铁, 胡润, 冯聪 2016 65 184101]

    [18]

    Liu S, Li P, Zhang Y, Han L, Cheng H C, Zhao J L 2016 Acta Opt. Sin. 10 1026001 (in Chinese) [刘圣, 李鹏, 章毅, 韩磊, 程华超, 赵建林 2016 光学学报 10 1026001]

    [19]

    O'Dwyer D P, Phelan C F, Ballantine K E, Rakovich Y P, Lunney J G, Donegan J F 2010 Opt. Express 18 27319

    [20]

    Peinado A, Lizana A, Turpn A, Iemmi C, Kalkandjiev T K, Mompart J, Campos J 2015 Opt. Express 23 5636

    [21]

    Turpin A, Kalkandjiev T K, Mompart J 2016 2016 15th Workshop on Information Optics Barcelona, Spain, July 11-15, 2016 p1

    [22]

    Tovar A A 2001 J. Opt. Soc. Am. A 18 1897

    [23]

    Turpin A, Loiko Y V, Peinado A, Lizana A, Kalkandjiev T K, Campos J, Mompart J 2015 Opt. Express 23 5704

    [24]

    Loiko Y V, Turpin A, Kalkandjiev T K, Mompart J 2012 Proc. SPIE 8246 82460T

  • [1]

    Lloyd H 1831 Lond. Edinb. Phil. Mag. 2 112

    [2]

    Born M, Wolf E 1999 Principles of Optics (seventh expanded edition) (Cambridge: Cambridge University Press) p904

    [3]

    Lunney J G, Weaire D 2006 Europhys. News 37 26

    [4]

    Belskii A M, Khapalyuk A P 1978 Opt. Spectrosc. 44 436

    [5]

    Poggendorff J C 1839 Pogg. Ann. 48 461

    [6]

    Voigt W 1905 Ann. Phys. Berlin 323 645

    [7]

    Raman C V, Rajagopalan V S, Nedungadi T M K 1941 Proc. Math. Sci. 14 221

    [8]

    Portigal D L, Burstein E 1969 J. Opt. Soc. Am. 59 1567

    [9]

    Berry M V 2004 J. Opt. A: Pure Appl. Opt. 6 289

    [10]

    Turpin A, Loiko Y V, Kalkandkiev T K, Tomizawa H, Mompart J 2014 Opt. Lett. 39 4349

    [11]

    O'Dwyer D P, Phelan C F, Rakovich Y P, Eastham P R, Lunney J G, Donegan J F 2011 Opt. Express 19 2580

    [12]

    Darcy R T, McCloskey D, Ballantine K E, Jennings B D, Lunney J G, Eastham P R, Donegan J F 2013 Opt. Express 21 20394

    [13]

    Grant S D, Zolotovskaya S A, Gillespie W A, Kalkandjiev T K, Abdolvand A 2014 Opt. Lett. 39 1988

    [14]

    Peet V 2014 J. Opt. 16 075702

    [15]

    Turpin A, Loiko Y V, Kalkandjiev T K, Corbaln R, Mompart J 2015 Phys. Rev. A 92 013802

    [16]

    Wu F T, Jiang X G, Liu B, Qiu Z X 2009 Acta Phys. Sin. 58 2410 (in Chinese) [吴逢铁, 江新光, 刘彬, 邱振兴 2009 58 2410]

    [17]

    Zhu Q C, Wu F T, Hu R, Feng C 2016 Acta Phys. Sin. 65 184101 (in Chinese) [朱清智, 吴逢铁, 胡润, 冯聪 2016 65 184101]

    [18]

    Liu S, Li P, Zhang Y, Han L, Cheng H C, Zhao J L 2016 Acta Opt. Sin. 10 1026001 (in Chinese) [刘圣, 李鹏, 章毅, 韩磊, 程华超, 赵建林 2016 光学学报 10 1026001]

    [19]

    O'Dwyer D P, Phelan C F, Ballantine K E, Rakovich Y P, Lunney J G, Donegan J F 2010 Opt. Express 18 27319

    [20]

    Peinado A, Lizana A, Turpn A, Iemmi C, Kalkandjiev T K, Mompart J, Campos J 2015 Opt. Express 23 5636

    [21]

    Turpin A, Kalkandjiev T K, Mompart J 2016 2016 15th Workshop on Information Optics Barcelona, Spain, July 11-15, 2016 p1

    [22]

    Tovar A A 2001 J. Opt. Soc. Am. A 18 1897

    [23]

    Turpin A, Loiko Y V, Peinado A, Lizana A, Kalkandjiev T K, Campos J, Mompart J 2015 Opt. Express 23 5704

    [24]

    Loiko Y V, Turpin A, Kalkandjiev T K, Mompart J 2012 Proc. SPIE 8246 82460T

  • [1] 刘绩林, 陈子阳, 张磊, 蒲继雄. 角向偏振无衍射光束的传输特性及其偏振态研究.  , 2015, 64(6): 064201. doi: 10.7498/aps.64.064201
    [2] 张志刚, 董凤良, 张青川, 褚卫国, 仇康, 程腾, 高杰, 伍小平. 像素偏振片阵列制备及其在偏振图像增强中的应用.  , 2014, 63(18): 184204. doi: 10.7498/aps.63.184204
    [3] 周国泉. 线偏振拉盖尔-高斯光束的远场发散特性.  , 2012, 61(2): 024208. doi: 10.7498/aps.61.024208
    [4] 陆世专, 游开明, 陈列尊, 王友文, 杨辉, 戴志平. 被圆相位片衍射的空心高斯光束的远场矢量结构特征.  , 2012, 61(23): 234201. doi: 10.7498/aps.61.234201
    [5] 黄翀, 陈海清, 廖兆曙, 赵爽. 高量级光衰减时对线偏振片组衰光系数的研究.  , 2010, 59(3): 1756-1761. doi: 10.7498/aps.59.1756
    [6] 任煜轩, 吴建光, 周小为, 付绍军, 孙晴, 王自强, 李银妹. 相位片角向衍射产生拉盖尔-高斯光束的实验研究.  , 2010, 59(6): 3930-3935. doi: 10.7498/aps.59.3930
    [7] 付文羽, 马书懿. 部分相干平顶光束经光阑衍射的偏振特性.  , 2008, 57(2): 1271-1277. doi: 10.7498/aps.57.1271
    [8] 李建龙, 吕百达. 非傍轴矢量高斯光束单缝衍射的严格理论.  , 2008, 57(6): 3481-3485. doi: 10.7498/aps.57.3481
    [9] 李建龙, 吕百达. 线偏振高斯光束通过复合型衍射光栅的传输特性.  , 2008, 57(3): 1656-1661. doi: 10.7498/aps.57.1656
    [10] 刘时雄, 刘劲松, 王 程, 郑子薇, 张光勇, 张绘蓝. 匹配高斯光束在耗散晶体中的孤波演化及偏转特性.  , 2007, 56(10): 5862-5871. doi: 10.7498/aps.56.5862
    [11] 李建龙, 吕百达. 线偏振高斯光束通过条形浮雕光栅的传输.  , 2007, 56(10): 5778-5783. doi: 10.7498/aps.56.5778
    [12] 马仰华, 赵建林, 王文礼, 黄卫东. 双轴晶体中二次谐波产生的最佳相位匹配条件.  , 2005, 54(5): 2084-2089. doi: 10.7498/aps.54.2084
    [13] 周国泉. 任意线偏振高斯光束的非傍轴传输.  , 2005, 54(10): 4710-4717. doi: 10.7498/aps.54.4710
    [14] 吴丹丹, 佘卫龙. 双轴晶体电光调制器的最优设计.  , 2005, 54(1): 134-138. doi: 10.7498/aps.54.134
    [15] 赵光普, 吕百达. 有球差多色高斯光束衍射引起的光谱开关.  , 2004, 53(9): 2974-2979. doi: 10.7498/aps.53.2974
    [16] 刘普生, 吕百达. 非傍轴矢量高斯光束的圆屏衍射.  , 2004, 53(11): 3724-3728. doi: 10.7498/aps.53.3724
    [17] 罗时荣, 吕百达. 平顶高斯光束在单轴晶体中的传输.  , 2003, 52(12): 3061-3067. doi: 10.7498/aps.52.3061
    [18] 沈为民, 金永兴, 邵中兴. 光在双轴晶体表面的反射与折射.  , 2003, 52(12): 3049-3054. doi: 10.7498/aps.52.3049
    [19] 袁林. 正入射时双轴晶体中偏振光出射点随晶体取向而变化的轨迹.  , 1996, 45(6): 1051-1058. doi: 10.7498/aps.45.1051
    [20] 刘韵吉, 郭常霖. 一种用加权高斯-柯西组合函数拟合对称衍射线形测定晶粒大小的方法.  , 1985, 34(9): 1156-1165. doi: 10.7498/aps.34.1156
计量
  • 文章访问数:  6449
  • PDF下载量:  335
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-08
  • 修回日期:  2017-03-24
  • 刊出日期:  2017-06-05

/

返回文章
返回
Baidu
map