搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒激光烧蚀硅材料表面形成周期波纹形貌研究

李志明 王玺 聂劲松

引用本文:
Citation:

飞秒激光烧蚀硅材料表面形成周期波纹形貌研究

李志明, 王玺, 聂劲松

Formation of periodic ripples on silicon surface ablated by femtosecond laser

Li Zhi-Ming, Wang Xi, Nie Jin-Song
PDF
导出引用
  • 基于Sipe-Drude模型和表面等离子体激元(SPP)的干涉理论分别对单脉冲飞秒激光诱导硅表面形成低频率周期性波纹进行分析研究.探究了波长800 nm、脉宽150 fs的单个飞秒激光烧蚀硅造成不同激发水平下波纹形貌的变化,考虑到材料的光学性质变化(由Drude模型得到的介电常数变化),引入包含双温方程的电子数密度模型.计算结果表明,Sipe-Drude和SPP理论都适用于分析和解释高激发态下周期性波纹,但Sipe-Drude理论更适合分析更为广泛的周期性波纹结构.同时,波纹延伸方向总是垂直于入射激光偏振方向,其空间周期略小于激光波长,并受到入射激光通量的影响.在激光通量为0.38 J/cm2时,波纹周期达到最小值.另外,还得到了不同入射角度的波纹周期变化情况,并在不同偏振态下随入射角度增大时波纹周期呈现相反的变化趋势.该研究对于理解飞秒激光造成硅表面形成周期结构及其在加工硅材料领域具有重要参考意义.
    The formation mechanism of low-spatial-frequency laser-induced periodic surface structure (LSFL) on single-crystalline silicon irradiated by single femtosecond-laser pulse (pulse duration =150 fs and central wavelength =800 nm) in air is investigated theoretically based on the interference theory of Sipe-Drude model and surface plasmon polariton (SPP). In order to account for transient intrapulse changes in the optical properties of the material due to the excitation of a dense electron-hole plasma, we model the maximum of the electron density as a function of laser fluence by solving the generally accepted two-temperature equation and Drude model. The results show that both theories are applicable to explaining the LSFL formation on the high-excited silicon. In the Sipe-Drude theory, the factor (k) is used to describe the efficacy with which the surface roughness at position k leads to inhomogeneous absorption of radiation. We find that the value of (k) first increases until reaching a maximum at an electron density of 61021 cm-3 and then decreases with the laser fluence increasing. When the incident laser fluence is 0.38 J/cm2, which is the threshold for excited plasma, the period reaches a minimum value in a small range of the top. Besides, the law of period is calculated according to the relationship between the (k) and period. In the SPP theory, the ripple period on the highly excited silicon increases with the laser fluence increasing. Comparing the scopes of application of two theories, the Sipe-Drude theory is found to be suitable for the analysis of more extensive periodic surface structures, while the SPP theory is applicable only for the case that laser fluence is close to the damage threshold. Moreover, our results are capable of explaining that the delay direction of periodic ripples are always perpendicular to the incident laser polarization direction by using the Sipe-Drude theory. When laser fluence approaches to the damage threshold, the LIPSS period is calculated sightly to be below the laser wavelength. It also reveals that the periodic surface structures are approximately the same in the different polarization directions with the increase of incident angle. Taking into account a single pulse, the corrugation period decreases with the increase of angle of incidence in the S polarization direction. And under different polarizations, with the increase of incident angle, the changes of the ripple period show an opposite trend. The obtained dependence provides a way to better control the properties of the periodic structures induced by femtosecond laser on the surface of a semiconductor material, which is of great significance for understanding the formation of periodic structure of silicon surface, caused by femtosecond laser, and its application in the field of silicon materials processing.
      通信作者: 聂劲松, njs7001@sina.com
    • 基金项目: 脉冲功率激光技术国家重点实验室基金(批准号:SKL2014ZR03)资助的课题.
      Corresponding author: Nie Jin-Song, njs7001@sina.com
    • Funds: Project supported by the Foundation of the State Key Laboratory of Pulsed Power Laser Technology of China (Grant No. SKL2014ZR03).
    [1]

    Sipe J, Young J, Preston J, van Driel H 1983 Phys. Rev. B 27 1141

    [2]

    Bonse J, Kruger J 2010 J. Appl. Phys. 108 034903

    [3]

    Li Z C, Zheng J, Ding Y K, Yin Q, Jiang X H, Li S W, Guo L, Yang D, Wang Z B, Zhang H, Liu Y G, Zhan X Y, Tang Q 2010 Chin. Phys. B 19 125202

    [4]

    Zhang N, Bao W X, Yang J H, Zhu X N 2013 Chin. Phys. B 22 054209

    [5]

    Zhang W, Teng H, Shen Z W, He P, Wang Z H, Wei Z Y 2016 Acta Phys. Sin. 65 224204 (in Chinese) [张伟, 滕浩, 沈忠伟, 何鹏, 王兆华, 魏志义 2016 65 224204]

    [6]

    Dufft D, Rosenfeld A, Das S, Grunwald R, Bonse J 2009 J. Appl. Phys. 105 034908

    [7]

    Liang F, Valle'e R, Chin S 2012 Opt. Express 20 4389

    [8]

    Bonse J, Rosenfeld A, Kruger J 2009 J. Appl. Phys. 106 104910

    [9]

    Huang M, Zhao F L, Cheng Y 2014 J. Appl. Phys. 115 103102

    [10]

    Wang C W, Zhao Q Z, Zhang Y, Wang G D, Qian J, Bao Z J, Li Y B, Bai F, Fan W Z 2015 Acta Phys. Sin. 64 0205204 (in Chinese) [王承伟, 赵全忠, 张扬, 王关德, 钱静, 鲍宗杰, 李阳博, 柏锋, 范文中 2015 64 0205204]

    [11]

    Bulgakova N, Stoian R, Rosenfeld A, Hertel I, Marine W, Campbell E 2005 Appl. Phys. A 81 345

    [12]

    Derrien T, Krger J, Itina T, Höhm S, Rosenfeld A, Bonse J 2013 Opt. Express 21 29643

    [13]

    Sokolowski T, Linde D 2000 Phys. Rev. B 61 2643

    [14]

    Bonse J, Munz M, Sturm H 2005 J. Appl. Phys. 97 013538

  • [1]

    Sipe J, Young J, Preston J, van Driel H 1983 Phys. Rev. B 27 1141

    [2]

    Bonse J, Kruger J 2010 J. Appl. Phys. 108 034903

    [3]

    Li Z C, Zheng J, Ding Y K, Yin Q, Jiang X H, Li S W, Guo L, Yang D, Wang Z B, Zhang H, Liu Y G, Zhan X Y, Tang Q 2010 Chin. Phys. B 19 125202

    [4]

    Zhang N, Bao W X, Yang J H, Zhu X N 2013 Chin. Phys. B 22 054209

    [5]

    Zhang W, Teng H, Shen Z W, He P, Wang Z H, Wei Z Y 2016 Acta Phys. Sin. 65 224204 (in Chinese) [张伟, 滕浩, 沈忠伟, 何鹏, 王兆华, 魏志义 2016 65 224204]

    [6]

    Dufft D, Rosenfeld A, Das S, Grunwald R, Bonse J 2009 J. Appl. Phys. 105 034908

    [7]

    Liang F, Valle'e R, Chin S 2012 Opt. Express 20 4389

    [8]

    Bonse J, Rosenfeld A, Kruger J 2009 J. Appl. Phys. 106 104910

    [9]

    Huang M, Zhao F L, Cheng Y 2014 J. Appl. Phys. 115 103102

    [10]

    Wang C W, Zhao Q Z, Zhang Y, Wang G D, Qian J, Bao Z J, Li Y B, Bai F, Fan W Z 2015 Acta Phys. Sin. 64 0205204 (in Chinese) [王承伟, 赵全忠, 张扬, 王关德, 钱静, 鲍宗杰, 李阳博, 柏锋, 范文中 2015 64 0205204]

    [11]

    Bulgakova N, Stoian R, Rosenfeld A, Hertel I, Marine W, Campbell E 2005 Appl. Phys. A 81 345

    [12]

    Derrien T, Krger J, Itina T, Höhm S, Rosenfeld A, Bonse J 2013 Opt. Express 21 29643

    [13]

    Sokolowski T, Linde D 2000 Phys. Rev. B 61 2643

    [14]

    Bonse J, Munz M, Sturm H 2005 J. Appl. Phys. 97 013538

  • [1] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态.  , 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [2] 祁云平, 贾迎君, 张婷, 丁京徽, 尉净雯, 王向贤. 基于Fano共振的金属-绝缘体-金属-石墨烯纳米管混合结构动态可调折射率传感器.  , 2022, 71(17): 178101. doi: 10.7498/aps.71.20220652
    [3] 陈颖, 周健, 丁志欣, 张敏, 朱奇光. 亚波长介质光栅/MDM波导/周期性光子晶体中双重Fano共振的形成及演变规律分析.  , 2021, (): . doi: 10.7498/aps.70.20211491
    [4] 王天浩, 王坤, 张阅, 姜林村. 温稠密铝等离子体物态方程及其电离平衡研究.  , 2020, 69(9): 099101. doi: 10.7498/aps.69.20191826
    [5] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器.  , 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [6] 刘仿, 李云翔, 黄翊东. 基于双表面等离子激元吸收的纳米光刻.  , 2017, 66(14): 148101. doi: 10.7498/aps.66.148101
    [7] 陆云清, 成心怡, 许敏, 许吉, 王瑾. 基于TPPs-SPPs混合模式的激发以增强单纳米缝异常透射.  , 2016, 65(20): 204207. doi: 10.7498/aps.65.204207
    [8] 赵泽宇, 刘晋侨, 李爱武, 徐颖. 金纳米柱阵列表面等离子体激元与J-聚集分子强耦合作用.  , 2016, 65(23): 231101. doi: 10.7498/aps.65.231101
    [9] 王平, 胡德骄, 肖钰斐, 庞霖. 金属光栅对表面等离子体波的辐射抑制研究.  , 2015, 64(8): 087301. doi: 10.7498/aps.64.087301
    [10] 陈泳屹, 秦莉, 佟存柱, 王立军. 金属-介质光栅结构表面等离子体耦合效率的模拟研究.  , 2013, 62(16): 167301. doi: 10.7498/aps.62.167301
    [11] 肖啸, 张志友, 肖志刚, 许德富, 邓迟. 银层超透镜光学传递函数的研究.  , 2012, 61(11): 114201. doi: 10.7498/aps.61.114201
    [12] 李巍, 王永钢, 杨伯君. 损耗对表面等离子体激元压缩态的影响.  , 2011, 60(2): 024203. doi: 10.7498/aps.60.024203
    [13] 沈云, 范定寰, 傅继武, 于国萍. 加入增益介质的表面等离子体激元耦合共振波导传输特性理论研究.  , 2011, 60(11): 117302. doi: 10.7498/aps.60.117302
    [14] 李敏, 张志友, 石莎, 杜惊雷. 亚波长金属聚焦透镜结构参数的优化与分析.  , 2010, 59(2): 958-963. doi: 10.7498/aps.59.958
    [15] 刘炳灿, 逯志欣, 于丽. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系.  , 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [16] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦.  , 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [17] 黄茜, 曹丽冉, 耿卫东, 孙建, 王烁, 熊绍珍, 张晓丹, 赵颖. 功能光学纳米Ag薄膜的制备及其光学特性研究.  , 2009, 58(4): 2731-2736. doi: 10.7498/aps.58.2731
    [18] 胡德志. 脉冲激光烧蚀中电声弛豫时间的确定.  , 2009, 58(2): 1077-1082. doi: 10.7498/aps.58.1077
    [19] 黄 松, 宁兆元, 辛 煜, 甘肇强. CF4气体ICP等离子体中的双温电子特性.  , 2004, 53(10): 3394-3397. doi: 10.7498/aps.53.3394
    [20] 徐至展, 唐永红, 钱爱娣. 激光等离子体受激布里渊散射光谱的周期性结构——前向散射的间接证据.  , 1988, 37(4): 557-565. doi: 10.7498/aps.37.557
计量
  • 文章访问数:  6533
  • PDF下载量:  242
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-14
  • 修回日期:  2017-03-14
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map