搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于大基模体积的10 mJ飞秒钛宝石激光再生放大器

杨帅帅 滕浩 何鹏 黄杭东 王兆华 董全力 魏志义

引用本文:
Citation:

基于大基模体积的10 mJ飞秒钛宝石激光再生放大器

杨帅帅, 滕浩, 何鹏, 黄杭东, 王兆华, 董全力, 魏志义

10 mJ femtosecond Ti: Sapphire regenerative amplifier with large mode size

Yang Shuai-Shuai, Teng Hao, He Peng, Huang Hang-Dong, Wang Zhao-Hua, Dong Quan-Li, Wei Zhi-Yi
PDF
导出引用
  • 文章报导了基于大基模体积的高能量飞秒钛宝石激光再生放大器的设计与实验研究,在重复频率10 Hz、抽运能量60 mJ的激励下,得到了单脉冲能量17.4 mJ的种子脉冲放大结果,压缩后的脉冲宽度为40.6 fs,能量为13.9 mJ.借助于此大基模体积再生腔,仅增加一级多通放大,实现了峰值功率达1.9 TW飞秒激光脉冲输出.结果表明,大模体积再生放大不仅降低了后续放大对抽运能量的要求,也可以单独压缩实现再生腔直接输出10 mJ量级的飞秒激光脉冲,是大能量高峰值功率飞秒激光系统的优质前端.
    With advent of chirped-pulse amplification, the peak power of femtosecond laser pulse was reached to petawatt (PW) or hundreds of terawatt (TW). Many progresses of high-field physics and ultrafast dynamics in matter are achieved using TW or PW laser. Pre-amplifier is an exponential growth amplifier which is also a bridge between oscillator and power amplifier. The best choice of pre-amplifier is amplification in regenerative cavity, due to its high stability and beam quality. The quality of pre-amplified laser pulse is significant to efficiency and beam quality of the successive power amplifier. High energy pre-amplifier with high beam quality will reduce the requirement of pump laser in final power amplifier. But typical regenerative amplifier only support low output energy of few millijoule. Higher energy from only one regenerative amplifier is crucial to whole laser system. High energy regenerative amplifier can be achieved by increasing the size of TEM00 in cavity. A new femtosecond Ti:sapphire regenerative amplifier with large mode size was demonstrated in this letter. The regenerative cavity is designed as stable linear resonator in which end mirrors are planar, the diameter of beam waist in Ti:sapphire crystal is larger than 2 mm, which can support high energy pulse amplified in cavity. By matching the focal spot of pump laser with the size of mode and optimization of cavity, the output laser energy up to 17.4 mJ was achieved under the pump energy of 60 mJ at repetition rate of 10 Hz, which corresponds to the efficiency of 29%. The amplified laser pulse from regenerative amplifier was compressed in a grating-pair compressor. By carefully alignment of incident angle and distance between the two gratings of compressor, the shortest pulses duration of 40.6 fs and energy of 13.9 mJ are obtained, which is a little bit longer than Fourier-transform limit based on spectrum of laser. The dispersion in the CPA laser system was also analyzed, after optimization of compressor, there are still high order dispersions uncompensated, which results in the duration of compressed pulses longer than Fourier-transform limit. Based on this large mode size regenerative amplifier, peak power of 1.9 TW laser pulses which compressed pulse energy of 81.4 mJ in 43 fs were also further realized by following only one stage of multipass amplifier. The beam quality (M2) was measured to be 1.6 and 1.5 in X and Y directions respectively, and the energy stability is 2.15% (rms). The results show that this large mode size regenerative amplifier is an ideal choice of pre-amplifier in TW laser system.
      Corresponding author: Teng Hao, hteng@iphy.ac.cn;qldong@iphy.ac.cn;zywei@iphy.ac.cn ; Dong Quan-Li, hteng@iphy.ac.cn;qldong@iphy.ac.cn;zywei@iphy.ac.cn ; Wei Zhi-Yi, hteng@iphy.ac.cn;qldong@iphy.ac.cn;zywei@iphy.ac.cn
    • Funds: Project supported by the Special Foundation of State Major Scientific Instrument and Equipment Development of China (Grant No. 2012YQ12004701), the State Key Development Program for Basic Research of China (Grant No. 2013CB922401), and the National Natural Science Foundation of China (Grant Nos. 11474002, 11674386).
    [1]

    Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42

    [2]

    Strickland D, Mourou G 1985 Opt. Commun. 55 219

    [3]

    Wang Z H, Liu C, Shen Z W, Zhang Q, Teng H, Wei Z Y 2011 Opt. Lett. 36 3194

    [4]

    Yu T J, Lee S K, Sung J H, Yoon J W, Jeong T M, Lee J 2012 Opt. Express 20 10807

    [5]

    Chu Y X, Gan Z B, Liang X Y, Yu L H, Lu X M, Wang C, Wang X L, Xu L, Lu H H, Yin D J, Leng Y X, Li R X, Xu Z Z 2015 Opt. Lett. 40 5011

    [6]

    Frantz L M, Nodvik J S 1963 J. Appl. Phys. 34 2346

    [7]

    Lowdermilk W H, Murray J E 1980 J. Appl. Phys. 51 2436

    [8]

    Koechner W 2005 Solid-State Laser Engineering (6th Ed. ) (Berlin: Springer) p156

    [9]

    Yanovsky V, Kalinchenko G., Reed S, Rousseau P, Chvykov V 2007 Acta Horticulturae 18 193

    [10]

    Liebetrau H, Hornung M, Keppler S, Hellwing M, Kessler A, Schorcht F 2016 Opt. Lett. 41 3006

    [11]

    Takeuchi S, Kobayashi T 1994 Opt. Commun. 109 518

    [12]

    Nabekawa Y, Kuramoto Y, Togashi T, Sekikawa T, Watanabe S 1998 Opt. Lett. 23 1384

    [13]

    Zhang J, Suzuki M, Baba M, Wei Z, Wang Z, Wang P, Zhang J, Zheng J, Kuroda H 2007 Appl. Opt. 46 2498

    [14]

    Chen S, Chen S, Chini M, Wang H, Yun C, Mashiko H, Wu Y, Chang Z 2009 Appl. Opt. 48 5692

    [15]

    Takada H, Torizuka K 2006 IEEE Journal of Selected Topics in Quantum Electronics 12 201

    [16]

    Amani E A, Nabekawa Y, Ishikawa K L, Takahashi H, Midorikawa K 2008 Opt. Express 16 13431

    [17]

    Shen Z W, Wang Z H, Fan H T, Qin S, Teng H, He P, Wei Z Y 2014 Acta Phys. Sin. 63 104211 (in Chinese) [沈忠伟, 王兆华, 范海涛, 秦爽, 滕浩, 何鹏, 魏志义 2014 63 104211]

    [18]

    He P, Teng H, Zhang N H, Liu Y Y, Wang Z H, Wei Z Y 2016 Acta Phys. Sin. 65 244201 (in Chinese) [何鹏, 滕浩, 张宁华, 刘阳阳, 王兆华, 魏志义 2016 65 244201]

    [19]

    Matras G, Huot N, Baubeau E, Audouard E 2007 Opt. Express 15 7528

    [20]

    Xu Z, Yang X, Vlgroux L, Saviot F, Zhou J, Zhang Z, Wang Y, Zhang W 2000 Science China Mathematics 43 533

    [21]

    Leng Y X, Lin L H, Xu Z Z 2002 Acta Optica Sinica 22 170 (in Chinese) [冷雨欣, 林礼煌, 徐至展 2002 光学学报 22 170]

    [22]

    Itatani J, Faure J, Nantel M, Mourou G, Watanabe S 1998 Opt. Commun. 148 70

    [23]

    Barty C P, Guo T, Le B C, Raksi F, Rose-Petruck C, Squier J, Wilson K R, Yakovlev V V, Yamakawa K 1996 Opt. Lett. 21 668

    [24]

    Tokita S, Kobayashi T 2008 Opt. Express 16 14875

    [25]

    Kiriyama H, Inoue N, Akahane Y, Yamakawa K 2006 Opt. Express 14 438

    [26]

    Li C, Lu X M, Wang C, Leng Y X, Liang X Y, Li R X, Xu Z Z 2007 Chin. Phys. Lett. 24 1276

    [27]

    Huang X J, Peng H S, Wei X F, Wang X D, Zeng X M, Zhou K N, Guo Y, Liu L Q, Wang X, Zhu Q H, Lin D H, Tang X D, Zhang X M, Chu X L, Wang Q Y 2005 High Power Laser and Particle Beams 17 1685 (in Chinese) [黄小军, 彭翰生, 魏晓峰, 王晓东, 曾小明, 周凯南, 郭仪, 刘兰琴, 王逍, 朱启华, 林东晖, 唐晓东, 张小民, 楚晓亮, 王清月 2005 强激光与粒子束 17 1685]

    [28]

    Nabekawa Y, Eilanlou A A, Furukawa Y, Ishikawa K L, Takahashi H, Midorikawa K 2010 Appl. Phys. B 101 523

    [29]

    Zhang W, Teng H, Wang Z H, Shen Z W, Liu C, Wei Z Y 2013 Acta Phys. Sin. 62 104211 (in Chinese) [张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义 2013 62 104211]

    [30]

    Ohmae G, Yagi T 2000 Proceedings of SPIE—The International Society for Optical Engineering Osaka, Japan, November 01, 1999 3886 407

    [31]

    Liu C, Wang Z H, Shen Z W, Zhang W, Teng H, Wei Z Y 2013 Acta Phys. Sin. 62 094209 (in Chinese) [刘成, 王兆华, 沈忠伟, 张伟, 滕浩, 魏志义 2013 62 094209]

    [32]

    Yamakawa K, Barty C P 2003 Opt. Lett. 28 2402

    [33]

    Ito S, Ishikawa H, Miura T, Takasago K, Endo A, Torizuka K 2003 Appl. Phys. B 76 497

    [34]

    Shang L J 2003 Acta Phys. Sin. 52 1408 (in Chinese) [尚连聚 2003 52 1408]

    [35]

    Tian J R, Han H N, Zhao Y Y, Wang P, Zhang W, Wei Z Y 2006 Acta Phys. Sin. 55 4725 (in Chinese) [田金荣, 韩海年, 赵研英, 王鹏, 张炜, 魏志义 2006 55 4725]

    [36]

    Song Y R, Zhang Z G, Wang Q Y 2003 Acta Phys. Sin. 52 581 (in Chinese) [宋晏蓉, 张志刚, 王清月 2003 52 581]

    [37]

    Cao D M, Wei Z Y, Teng H, Xia J F, Zhang J, Hou X 2000 Acta Phys. Sin. 49 1202 (in Chinese) [曹东茂, 魏志义, 滕浩, 夏江帆, 张杰, 侯洵 2000 49 1202]

    [38]

    Zhou J, Peatross J, Murnane M M, Kapteyn H C, Christov I P 1996 Phys. Rev. Lett. 76 752

    [39]

    Remington B A, Drake R P, Takabe H, Arnett D 1999 Phys. Plasmas 7 1641

    [40]

    Clark E L, Krushelnick K, Zepf M, Beg F N, Tatarakis M, Machacek A, Santala M I, Watts I, Norreys P A, Dangor A E 2000 Phys. Rev. Lett. 85 1654

    [41]

    Zhang J, Hao Z Q, Yuan X H, Zheng Z Y, Zhang Z, Yu J 2006 Chinese Journal of Quantum Electronics 23 282 (in Chinese) [张杰, 郝作强, 远晓辉, 郑志远, 张喆, 俞进 2006 量子电子学报 23 282]

  • [1]

    Spence D E, Kean P N, Sibbett W 1991 Opt. Lett. 16 42

    [2]

    Strickland D, Mourou G 1985 Opt. Commun. 55 219

    [3]

    Wang Z H, Liu C, Shen Z W, Zhang Q, Teng H, Wei Z Y 2011 Opt. Lett. 36 3194

    [4]

    Yu T J, Lee S K, Sung J H, Yoon J W, Jeong T M, Lee J 2012 Opt. Express 20 10807

    [5]

    Chu Y X, Gan Z B, Liang X Y, Yu L H, Lu X M, Wang C, Wang X L, Xu L, Lu H H, Yin D J, Leng Y X, Li R X, Xu Z Z 2015 Opt. Lett. 40 5011

    [6]

    Frantz L M, Nodvik J S 1963 J. Appl. Phys. 34 2346

    [7]

    Lowdermilk W H, Murray J E 1980 J. Appl. Phys. 51 2436

    [8]

    Koechner W 2005 Solid-State Laser Engineering (6th Ed. ) (Berlin: Springer) p156

    [9]

    Yanovsky V, Kalinchenko G., Reed S, Rousseau P, Chvykov V 2007 Acta Horticulturae 18 193

    [10]

    Liebetrau H, Hornung M, Keppler S, Hellwing M, Kessler A, Schorcht F 2016 Opt. Lett. 41 3006

    [11]

    Takeuchi S, Kobayashi T 1994 Opt. Commun. 109 518

    [12]

    Nabekawa Y, Kuramoto Y, Togashi T, Sekikawa T, Watanabe S 1998 Opt. Lett. 23 1384

    [13]

    Zhang J, Suzuki M, Baba M, Wei Z, Wang Z, Wang P, Zhang J, Zheng J, Kuroda H 2007 Appl. Opt. 46 2498

    [14]

    Chen S, Chen S, Chini M, Wang H, Yun C, Mashiko H, Wu Y, Chang Z 2009 Appl. Opt. 48 5692

    [15]

    Takada H, Torizuka K 2006 IEEE Journal of Selected Topics in Quantum Electronics 12 201

    [16]

    Amani E A, Nabekawa Y, Ishikawa K L, Takahashi H, Midorikawa K 2008 Opt. Express 16 13431

    [17]

    Shen Z W, Wang Z H, Fan H T, Qin S, Teng H, He P, Wei Z Y 2014 Acta Phys. Sin. 63 104211 (in Chinese) [沈忠伟, 王兆华, 范海涛, 秦爽, 滕浩, 何鹏, 魏志义 2014 63 104211]

    [18]

    He P, Teng H, Zhang N H, Liu Y Y, Wang Z H, Wei Z Y 2016 Acta Phys. Sin. 65 244201 (in Chinese) [何鹏, 滕浩, 张宁华, 刘阳阳, 王兆华, 魏志义 2016 65 244201]

    [19]

    Matras G, Huot N, Baubeau E, Audouard E 2007 Opt. Express 15 7528

    [20]

    Xu Z, Yang X, Vlgroux L, Saviot F, Zhou J, Zhang Z, Wang Y, Zhang W 2000 Science China Mathematics 43 533

    [21]

    Leng Y X, Lin L H, Xu Z Z 2002 Acta Optica Sinica 22 170 (in Chinese) [冷雨欣, 林礼煌, 徐至展 2002 光学学报 22 170]

    [22]

    Itatani J, Faure J, Nantel M, Mourou G, Watanabe S 1998 Opt. Commun. 148 70

    [23]

    Barty C P, Guo T, Le B C, Raksi F, Rose-Petruck C, Squier J, Wilson K R, Yakovlev V V, Yamakawa K 1996 Opt. Lett. 21 668

    [24]

    Tokita S, Kobayashi T 2008 Opt. Express 16 14875

    [25]

    Kiriyama H, Inoue N, Akahane Y, Yamakawa K 2006 Opt. Express 14 438

    [26]

    Li C, Lu X M, Wang C, Leng Y X, Liang X Y, Li R X, Xu Z Z 2007 Chin. Phys. Lett. 24 1276

    [27]

    Huang X J, Peng H S, Wei X F, Wang X D, Zeng X M, Zhou K N, Guo Y, Liu L Q, Wang X, Zhu Q H, Lin D H, Tang X D, Zhang X M, Chu X L, Wang Q Y 2005 High Power Laser and Particle Beams 17 1685 (in Chinese) [黄小军, 彭翰生, 魏晓峰, 王晓东, 曾小明, 周凯南, 郭仪, 刘兰琴, 王逍, 朱启华, 林东晖, 唐晓东, 张小民, 楚晓亮, 王清月 2005 强激光与粒子束 17 1685]

    [28]

    Nabekawa Y, Eilanlou A A, Furukawa Y, Ishikawa K L, Takahashi H, Midorikawa K 2010 Appl. Phys. B 101 523

    [29]

    Zhang W, Teng H, Wang Z H, Shen Z W, Liu C, Wei Z Y 2013 Acta Phys. Sin. 62 104211 (in Chinese) [张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义 2013 62 104211]

    [30]

    Ohmae G, Yagi T 2000 Proceedings of SPIE—The International Society for Optical Engineering Osaka, Japan, November 01, 1999 3886 407

    [31]

    Liu C, Wang Z H, Shen Z W, Zhang W, Teng H, Wei Z Y 2013 Acta Phys. Sin. 62 094209 (in Chinese) [刘成, 王兆华, 沈忠伟, 张伟, 滕浩, 魏志义 2013 62 094209]

    [32]

    Yamakawa K, Barty C P 2003 Opt. Lett. 28 2402

    [33]

    Ito S, Ishikawa H, Miura T, Takasago K, Endo A, Torizuka K 2003 Appl. Phys. B 76 497

    [34]

    Shang L J 2003 Acta Phys. Sin. 52 1408 (in Chinese) [尚连聚 2003 52 1408]

    [35]

    Tian J R, Han H N, Zhao Y Y, Wang P, Zhang W, Wei Z Y 2006 Acta Phys. Sin. 55 4725 (in Chinese) [田金荣, 韩海年, 赵研英, 王鹏, 张炜, 魏志义 2006 55 4725]

    [36]

    Song Y R, Zhang Z G, Wang Q Y 2003 Acta Phys. Sin. 52 581 (in Chinese) [宋晏蓉, 张志刚, 王清月 2003 52 581]

    [37]

    Cao D M, Wei Z Y, Teng H, Xia J F, Zhang J, Hou X 2000 Acta Phys. Sin. 49 1202 (in Chinese) [曹东茂, 魏志义, 滕浩, 夏江帆, 张杰, 侯洵 2000 49 1202]

    [38]

    Zhou J, Peatross J, Murnane M M, Kapteyn H C, Christov I P 1996 Phys. Rev. Lett. 76 752

    [39]

    Remington B A, Drake R P, Takabe H, Arnett D 1999 Phys. Plasmas 7 1641

    [40]

    Clark E L, Krushelnick K, Zepf M, Beg F N, Tatarakis M, Machacek A, Santala M I, Watts I, Norreys P A, Dangor A E 2000 Phys. Rev. Lett. 85 1654

    [41]

    Zhang J, Hao Z Q, Yuan X H, Zheng Z Y, Zhang Z, Yu J 2006 Chinese Journal of Quantum Electronics 23 282 (in Chinese) [张杰, 郝作强, 远晓辉, 郑志远, 张喆, 俞进 2006 量子电子学报 23 282]

  • [1] 郑悦, 张宇璇, 孙少华, 丁鹏基, 胡碧涛, 刘作业. 飞秒激光脉冲对N2分子非绝热准直的调控.  , 2023, 72(6): 064203. doi: 10.7498/aps.72.20222112
    [2] 王阁阳, 白川, 麦海静, 郑立, 田轩, 于洋, 田文龙, 徐晓东, 魏志义, 朱江峰. Yb:CaYAlO4再生放大器.  , 2023, 72(5): 054204. doi: 10.7498/aps.72.20222141
    [3] 张鹏, 滕浩, 杨浩, 吕仁冲, 王柯俭, 朱江峰, 魏志义. 基于Herriott型多通结构的块材料展宽与棱栅对色散补偿的啁啾脉冲放大.  , 2022, 71(11): 114202. doi: 10.7498/aps.71.20212381
    [4] 王楠, 阮双琛. 啁啾脉冲放大激光系统中展宽器色散的解析算法.  , 2020, 69(2): 024201. doi: 10.7498/aps.69.20191587
    [5] 陶海岩, 陈锐, 宋晓伟, 陈亚楠, 林景全. 飞秒激光脉冲能量累积优化对黑硅表面形貌的影响.  , 2017, 66(6): 067902. doi: 10.7498/aps.66.067902
    [6] 时雷, 马挺, 吴浩煜, 孙青, 马金栋, 路桥, 毛庆和. 基于耗散孤子种子的啁啾脉冲光纤放大系统输出特性.  , 2016, 65(8): 084203. doi: 10.7498/aps.65.084203
    [7] 张伟, 滕浩, 沈忠伟, 何鹏, 王兆华, 魏志义. 18 mJ,100 Hz飞秒钛宝石激光放大器.  , 2016, 65(22): 224204. doi: 10.7498/aps.65.224204
    [8] 姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣. 飞秒激光脉冲整形技术及其应用.  , 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [9] 沈忠伟, 王兆华, 范海涛, 秦爽, 滕浩, 何鹏, 魏志义. 输出能量4mJ的1kHz飞秒掺钛蓝宝石激光再生放大研究.  , 2014, 63(10): 104211. doi: 10.7498/aps.63.104211
    [10] 郭淑艳, 叶蓬, 滕浩, 张伟, 李德华, 王兆华, 魏志义. 反射式棱栅对展宽器用于啁啾脉冲放大激光的研究.  , 2013, 62(9): 094202. doi: 10.7498/aps.62.094202
    [11] 张伟, 滕浩, 王兆华, 沈忠伟, 刘成, 魏志义. 采用环形再生腔结构的飞秒激光啁啾脉冲放大研究.  , 2013, 62(10): 104211. doi: 10.7498/aps.62.104211
    [12] 葛绪雷, 马景龙, 郑轶, 鲁欣, 蒋刚, 李玉同, 魏志义, 张杰. 多脉冲序列飞秒钛宝石激光的啁啾脉冲放大.  , 2012, 61(21): 214206. doi: 10.7498/aps.61.214206
    [13] 谢旭东, 朱启华, 曾小明, 王逍, 黄小军, 左言磊, 张颖, 周凯南, 黄征. 钕玻璃啁啾脉冲放大器产生百焦耳亚皮秒脉冲.  , 2009, 58(11): 7690-7694. doi: 10.7498/aps.58.7690
    [14] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究.  , 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [15] 刘 军, 李小芳, 陈晓伟, 姜永亮, 李儒新, 徐至展. 1 kHz-0.1 TW高效率钛宝石激光放大器.  , 2007, 56(3): 1375-1378. doi: 10.7498/aps.56.1375
    [16] 冯伟伟, 林礼煌, 王文耀, 李儒新, 汪丽春. 用钛宝石再生放大器产生高重复率啁啾脉冲列.  , 2007, 56(7): 3955-3960. doi: 10.7498/aps.56.3955
    [17] 孙振红, 柴 路, 张志刚, 王清月, 张伟力, 袁晓东, 黄小军. 马丁内兹型啁啾脉冲放大系统高阶色散的混合补偿.  , 2005, 54(2): 777-781. doi: 10.7498/aps.54.777
    [18] 王 鹏, 王兆华, 魏志义, 郑加安, 孙敬华, 张 杰. 用SPIDER法测量飞秒激光脉冲的光谱相位.  , 2004, 53(9): 3004-3009. doi: 10.7498/aps.53.3004
    [19] 王兆华, 魏志义, 滕 浩, 王 鹏, 张 杰. 飞秒激光脉冲的谐波频率分辨光学开关法测量研究.  , 2003, 52(2): 362-366. doi: 10.7498/aps.52.362
    [20] 朱鹏飞, 钱列加, 薛绍林, 林尊琪. 基于“神光-Ⅱ”装置的飞秒拍瓦级光学参量啁啾脉冲放大的特性分析与系统设计.  , 2003, 52(3): 587-594. doi: 10.7498/aps.52.587
计量
  • 文章访问数:  6436
  • PDF下载量:  178
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-01-25
  • 修回日期:  2017-04-20
  • 刊出日期:  2017-05-05

/

返回文章
返回
Baidu
map