-
为了研究毫秒脉冲激光致硅基PIN光电二极管电学损伤,基于热传导及弹塑性力学理论,在光电二极管内部材料各向同性并且P-I-N三层结构之间满足温度连续和热流平衡条件下,建立毫秒脉冲激光辐照硅基PIN光电二极管二维轴对称模型,采用有限元方法模拟分析了1064 nm Nd:YAG毫秒量级脉冲激光辐照硅基PIN光电二极管的温度场与应力场分布,并实验测量了硅基PIN光电二极管实验前后的电学参数.结果表明,激光辐照硅基PIN光电二极管时,温升使材料表面熔融、烧蚀,并且在空间上存在温度梯度变化,即激光辐照产生的热与应力使光敏面及硅晶格晶键损伤,最终造成光电探测器的探测性能下降.研究结果可为毫秒脉冲激光辐照硅基PIN光电二极管电学损伤机理奠定基础.In this paper, based on the thermal elasto-plastic constitutive theory and the equivalent specific heat method, the electrical damage in the silicon-based positive-intrinsic-negative (PIN) photodiode irradiated by millisecond (ms)-pulsed laser is investigated. On condition that the internal material of the photodiode is isotropic and threelayer structure of the P-I-N satisfying temperature continuity and heat flow balance, a two-dimensional (2D) simulation axisymmetric model for silicon-based PIN photodiode irradiated by ms-pulsed laser is built. The thermal and stress field distribution are simulated in the silicon-based PIN photodiode irradiated by the Nd:YAG ms-pulsed laser at 1064 nm through using the finite element simulation software. At the same time, electrical parameters before and after the experiment of the silicon-based PIN photodiode irradiated by pulsed laser are measured. The experimental results show that the surface is melted and ablated gradually with the increase of temperature in the high energy pulsed laser, and there is a gradient change for the temperature in spatial distribution. With the increase of laser energy density, photoelectric detector shows the temperature rise phenomenon and damage effect is more obvious. When the tensile stress or compressive stress is greater than 1.7 GPa, the photosensitive surface and the silicon lattice are damaged with the changes of thermal and stress fields. Bond cleavage can change the photogenerated carrier transport channel, and the transport time can be longer. In this process, the photogenerated electron-hole pairs are readily recombined, carrier lifetime decrease and carrier concentration increase, which leads to the increase of the dark current and the decrease of the responsivity. Eventually the performance of photodetector detection is reduced. Through comprehensive comparison between experiment and simulation, one can confirm that this theoretical model has a considerable level of reliability. The conclusion we can draw is that the threshold of electrical damage is 1.7 GPa. So the control of annealing temperature is extremely important for the process of making PIN photodiode. Preventing the lattice damage of the material can improve the product yield rate. In addition, from the point of view of the use of products, the stability of the working environment can extend the service life of products, and the detection accuracy is guaranteed. Conclusively, the results in this paper establish the foundation to investigate the electrical damage mechanism in the silicon-based PIN photodiode irradiated by ms-pulsed laser.
-
Keywords:
- millisecond laser /
- photodiode /
- responsivity /
- dark current
[1] Xu L J, Cai H X, Li C L, Tan Y, Jin G Y, Zhang X H 2013 Optik 124 225
[2] Giuliani J F, Marquardt C L 1974 J. Appl. Phys. 45 4993
[3] Matsuoka Y, Usami A 1974 Appl. Phys. Lett. 25 574
[4] Dou X A, Sun X Q, Shao L 2013 Laser Eng. 25 117
[5] Hameiri Z, Mai L, Puzzer T, Wenham S R 2011 Sol. Energ. Mat. Sol. C 95 1085
[6] Watkins S E, Zhang C Z, Walser R M, Becker M F 1990 Appl. Opt. 29 827
[7] Moeglin J P 2002 Opt. Laser Eng. 38 261
[8] Vest R E, Grantham S 2003 Appl. Opt. 42 5054
[9] Shaw P S, Gupta R, Lykke K R 2005 Appl. Opt. 44 197
[10] Liu T H, Zhong H R, Lu Q S, Jiang Z F, Wang Y P 2001 Laser J. 22 5 (in Chinese) [刘天华, 钟海荣, 陆启生, 姜宗福, 王云萍 2001 激光杂志 22 5]
[11] Jiang J J 2005 M. S. Thesis (Sichuan: Sichuan University) (in Chinese) [江继军2005 硕士学位论文 (四川:四川大学)]
[12] Li Z W, Wang X, Shen Z H, Lu J, Ni X W 2012 Appl. Opt. 51 2759
[13] Li Z W, Wang X, Shen Z H, Lu J, Ni X W 2015 Appl. Opt. 54 378
[14] Wei Z 2014 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [魏智硕士学位论文 (长春:长春理工大学)]
[15] Geist J, Zalewski E F, Schaefer A R 1980 Appl. Opt. 19 3795
[16] Arora V K, Dawar A L 1996 Infrared Phys. Techn. 37 245
[17] Arora V K, Dawar A L 1996 Appl. Opt. 35 7061
[18] Brand A A, Meyer F, Nekarda J F, Preu R 2014 Appl. Phys. A 117 237
[19] Sun H Y 2006 M. S. Thesis (Changsha: Graduate School of National University of Defense Technology) (in Chinese) [孙赫颖 2006 硕士学位论文 (长沙:国防科学技术大学)]
[20] Du L Y, Wu Z M, Li R, Tang F, Jiang Y D 2016 Opt. Lett 41 5031
[21] Zhao F 2010 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [赵菲 2010 硕士学位论文 (长春: 长春理工大学)]
[22] Wang Y Z, Song X N 2012 Acta Phys. Sin. 61 234601 (in Chinese) [王颖泽, 宋新南 2012 61 234601]
[23] Wei Z, Jin G Y, Peng B, Zhang X H, Tan Y 2014 Acta Phys. Sin. 63 194205 (in Chinese) [魏智, 金光勇, 彭博, 张喜和, 谭永 2014 63 194205]
[24] Kumar B U, Pardoen T, Passi V, Hoshi Y, Raskin J P 2013 Appl. Phys. Lett. 102 031911
[25] Kahn H, Heuer A H 2002 Science 298 1215
[26] Tayagaki T, Usami N, Pan W, Hoshi Y, Ooi K, Kanemitsu Y 2012 Appl. Phys. Lett. 101 133905
-
[1] Xu L J, Cai H X, Li C L, Tan Y, Jin G Y, Zhang X H 2013 Optik 124 225
[2] Giuliani J F, Marquardt C L 1974 J. Appl. Phys. 45 4993
[3] Matsuoka Y, Usami A 1974 Appl. Phys. Lett. 25 574
[4] Dou X A, Sun X Q, Shao L 2013 Laser Eng. 25 117
[5] Hameiri Z, Mai L, Puzzer T, Wenham S R 2011 Sol. Energ. Mat. Sol. C 95 1085
[6] Watkins S E, Zhang C Z, Walser R M, Becker M F 1990 Appl. Opt. 29 827
[7] Moeglin J P 2002 Opt. Laser Eng. 38 261
[8] Vest R E, Grantham S 2003 Appl. Opt. 42 5054
[9] Shaw P S, Gupta R, Lykke K R 2005 Appl. Opt. 44 197
[10] Liu T H, Zhong H R, Lu Q S, Jiang Z F, Wang Y P 2001 Laser J. 22 5 (in Chinese) [刘天华, 钟海荣, 陆启生, 姜宗福, 王云萍 2001 激光杂志 22 5]
[11] Jiang J J 2005 M. S. Thesis (Sichuan: Sichuan University) (in Chinese) [江继军2005 硕士学位论文 (四川:四川大学)]
[12] Li Z W, Wang X, Shen Z H, Lu J, Ni X W 2012 Appl. Opt. 51 2759
[13] Li Z W, Wang X, Shen Z H, Lu J, Ni X W 2015 Appl. Opt. 54 378
[14] Wei Z 2014 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [魏智硕士学位论文 (长春:长春理工大学)]
[15] Geist J, Zalewski E F, Schaefer A R 1980 Appl. Opt. 19 3795
[16] Arora V K, Dawar A L 1996 Infrared Phys. Techn. 37 245
[17] Arora V K, Dawar A L 1996 Appl. Opt. 35 7061
[18] Brand A A, Meyer F, Nekarda J F, Preu R 2014 Appl. Phys. A 117 237
[19] Sun H Y 2006 M. S. Thesis (Changsha: Graduate School of National University of Defense Technology) (in Chinese) [孙赫颖 2006 硕士学位论文 (长沙:国防科学技术大学)]
[20] Du L Y, Wu Z M, Li R, Tang F, Jiang Y D 2016 Opt. Lett 41 5031
[21] Zhao F 2010 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [赵菲 2010 硕士学位论文 (长春: 长春理工大学)]
[22] Wang Y Z, Song X N 2012 Acta Phys. Sin. 61 234601 (in Chinese) [王颖泽, 宋新南 2012 61 234601]
[23] Wei Z, Jin G Y, Peng B, Zhang X H, Tan Y 2014 Acta Phys. Sin. 63 194205 (in Chinese) [魏智, 金光勇, 彭博, 张喜和, 谭永 2014 63 194205]
[24] Kumar B U, Pardoen T, Passi V, Hoshi Y, Raskin J P 2013 Appl. Phys. Lett. 102 031911
[25] Kahn H, Heuer A H 2002 Science 298 1215
[26] Tayagaki T, Usami N, Pan W, Hoshi Y, Ooi K, Kanemitsu Y 2012 Appl. Phys. Lett. 101 133905
计量
- 文章访问数: 6430
- PDF下载量: 172
- 被引次数: 0