搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低阈值单横模852 nm半导体激光器

刘储 关宝璐 米国鑫 廖翌如 刘振扬 李建军 徐晨

引用本文:
Citation:

低阈值单横模852 nm半导体激光器

刘储, 关宝璐, 米国鑫, 廖翌如, 刘振扬, 李建军, 徐晨

A low threshold single transverse mode 852 nm semiconductor laser diode

Liu Chu, Guan Bao-Lu, Mi Guo-Xin, Liao Yi-Ru, Liu Zhen-Yang, Li Jian-Jun, Xu Chen
PDF
导出引用
  • 基于波导理论、等效折射率方法,设计并制备了非对称波导隔离双沟结构脊型边发射激光器,最终获得了低阈值单基侧模852 nm激光器. 详细研究了不同脊型台深宽比参数设计对激光器侧向模式特性的影响规律,实现了腔面未镀膜情况下脊型波导边发射激光器的单基侧模稳定输出,同时激射波长可以精确调谐到852 nm;工作电流达到150 mA,工作温度30 ℃;斜率效率最高可达0.89 mW/mA,光谱半宽小于1 nm. 研究结果为进一步实现超窄线宽激光器提供了参考和借鉴,并且为实现激光器稳定输出提供了实验基础.
    A 852 nm ridge waveguide edge emitting laser has important applications. But lateral mode instability leads to its poor beam quality because of its ridge structure. Such a structure gives rise to two guidance mechanisms (gain-guide and index-guide), whose change leads to kink effect. So, the control of the single fundamental lateral mode is more difficult. There is no well-informed study in these aspects for ridge waveguide edge emitting lasers. In this paper we study how to improve the beam quality for achieving a stable fundamental lateral mode output experimentally. We are to investigate the influence of lateral mode characteristics of the laser with different ridge depth-to-width ratios in detail by waveguide theory and equivalent refractive index method. Depth and width of the ridge are two key parameters influencing lateral mode. The depth can control lateral guidance mechanism, and the width can control lateral mode order. We find that the ratio must be in a limited range to ensure the single fundamental lateral mode steady. Through theoretical analysis of waveguide theory and equivalent refractive index method, we obtain a limited range of depth-to-width ratio. Then we conduct an experimental comparison, where we adjust the ridge depth, with the width fixed, to control the ratio. Meanwhile we improve the fabrication technology to ensure the accuracy of the structure. We design and fabricate an asymmetric waveguide ridge waveguide edge emitting laser with isolation grooves, whose active region is the core of asymmetric waveguide epitaxy structure. The key structural parameters are 5 m in ridge width, 500 nm in ridge depth, 2 m in isolation grooves depth, 10 m in width, 30 m in spacing between the grooves, and 1 mm in cavity length. Isolation grooves are very useful for improving the performance of the laser: threshold decreased by 50%, output power raised by 44%, and slop efficiency increased by 17%. And the equally crucial role of grooves is to avoid being damaged at packaging process to maintain laser structure. Finally we achieve a stable single fundamental lateral mode output and an accurate tuning wavelength at 852 nm of ridge waveguide edge emitting laser without cavity surface coated at working current 150 mA, working temperature 30 ℃ (working conditions can be changed in a small range). The slope efficiency is on average 0.7 mW/mA (its maximum value is 0.89 mW/mA), and the full wave at half maximum is less than 1 nm. Although we improve the performance of ridge waveguide edge emitting laser and beam quality for stable output, there is still a need to further study the stable output over a wide range. The results in this paper will provide a useful reference for realizing the stable output ridge waveguide edge emitting lasers and the ultra-narrow line-width lasers.
      通信作者: 关宝璐, gbl@bjut.edu.cn
    • 基金项目: 半导体激光器产业化技术基金(批准号:YXBGD20151JL01)、国家自然科学基金(批准号:61575008,60908012,61376049,61076044,61107026,61204011)、北京市自然科学基金(批准号:4172011,4132006,4102003,4112006)和北京市教育委员会基础技术研究基金(批准号:KM201210005004)资助的课题.
      Corresponding author: Guan Bao-Lu, gbl@bjut.edu.cn
    • Funds: Project supported by the Foundation of Based Technology, China (Grant No. YXBGD20151JL01), the National Natural Science Foundation of China (Grant Nos. 61575008, 60908012, 61376049, 61076044, 61107026, 61204011), the Natural Science Foundation of Beijing, China (Grant Nos. 4172011, 4132006, 4102003, 4112006), and the Scientific Research Fund Project of Municipal Education Commission of Beijing, China (Grant No. KM201210005004).
    [1]

    Jiang L L, Achtenhagen M, Amarasinghe N V, Young P, Evans G 2009 Proc. SPIE 7230, Novel In-Plane Semiconductor Lasers VIII San Jose, California, United States, January 24, 2009 72301F

    [2]

    Luigi R, Richard M D L R, John S R, Thomas F K 2001 IEEE Photonics Technol. 13 176

    [3]

    Wang Y Z 2014 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [王钰智 2014 硕士学位论文 (长春: 长春理工大学)]

    [4]

    Yan S, Anthony E S 1996 IEEE J. Quantum Electron. 32 5

    [5]

    Cook D D, Nash F R 1975 J. Appl. Phys. 46 1660

    [6]

    Krupka D, Paoli T 1975 IEEE J. Quantum Electron. 11 503

    [7]

    Kirkby P A, Thompson G H B 1973 Appl. Phys. Lett. 22 638

    [8]

    Du S L 2011 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [杜石磊 2011 硕士学位论文 (长春: 长春理工大学)]

    [9]

    Xu H W, Ning Y Q, Zeng Y G, Zhang X, Qin L 2013 Optics and Precision Engineering 21 590 (in Chinese) [徐华伟, 宁永强, 曾玉刚, 张星, 秦莉 2013 光学精密工程 21 590]

    [10]

    Xu H W, Ning Y Q, Zeng Y G, Zhang X, Qin L, Liu Y, Wang L J 2012 Chin. J. Lumin. 33 6 (in Chinese) [徐华伟, 宁永强, 曾玉刚, 张星, 秦莉, 刘云, 王立军 2012 发光学报 33 6]

    [11]

    Xu H W 2012 Ph. D. Dissertation (Changchun: Changchun Institute of Optics, Fine Mechanics and Physic, Chinese Academy of Sciences, China) (in Chinese) [徐华伟 2012 博士学位论文 (长春: 中科院长春光学精密机械与物理研究所)]

    [12]

    Masanobu W, Seiji M, Hideo I, Hiroyoshi Y 1990 J. Appl. Phys. 68 2599

    [13]

    Zhang X 2011 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [张秀 2011 硕士学位论文 (长春: 长春理工大学)]

    [14]

    Richard A S, Joachim S, Klaus P 1991 IEEE J. Quantum Electron. 27 8

    [15]

    Cao S S 1996 Laser Technol. 20 3 (in Chinese) [曹三松 1996 激光技术 20 3]

    [16]

    Seiji M, Hiroyoshi Y 1984 IEEE J. Quantum Electron. QE-20 7

    [17]

    Jerome K B, Dan B 1984 IEEE J. Quantum Electron. QE-20 879

    [18]

    Reynolds C L, Holbrook W R, Shimer J A, Tharaldsen S M, Agrawal G P, Temkin H 1986 Electron. Lett. 22 1290

    [19]

    Zhang S, Liu S J, Cui B F, Li J J, Ji W, Chen J X, Wang X L, Su D J, Li J C 2014 Semicond. Opt. 35 1 (in Chinese) [张松, 刘素娟, 崔碧峰, 李建军, 计伟, 陈京湘, 王晓玲, 苏道军, 李佳莼 2014 半导体光电 35 1]

    [20]

    Zhang S 2014 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese) [张松 2014 硕士学位论文 (北京: 北京工业大学)]

  • [1]

    Jiang L L, Achtenhagen M, Amarasinghe N V, Young P, Evans G 2009 Proc. SPIE 7230, Novel In-Plane Semiconductor Lasers VIII San Jose, California, United States, January 24, 2009 72301F

    [2]

    Luigi R, Richard M D L R, John S R, Thomas F K 2001 IEEE Photonics Technol. 13 176

    [3]

    Wang Y Z 2014 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [王钰智 2014 硕士学位论文 (长春: 长春理工大学)]

    [4]

    Yan S, Anthony E S 1996 IEEE J. Quantum Electron. 32 5

    [5]

    Cook D D, Nash F R 1975 J. Appl. Phys. 46 1660

    [6]

    Krupka D, Paoli T 1975 IEEE J. Quantum Electron. 11 503

    [7]

    Kirkby P A, Thompson G H B 1973 Appl. Phys. Lett. 22 638

    [8]

    Du S L 2011 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [杜石磊 2011 硕士学位论文 (长春: 长春理工大学)]

    [9]

    Xu H W, Ning Y Q, Zeng Y G, Zhang X, Qin L 2013 Optics and Precision Engineering 21 590 (in Chinese) [徐华伟, 宁永强, 曾玉刚, 张星, 秦莉 2013 光学精密工程 21 590]

    [10]

    Xu H W, Ning Y Q, Zeng Y G, Zhang X, Qin L, Liu Y, Wang L J 2012 Chin. J. Lumin. 33 6 (in Chinese) [徐华伟, 宁永强, 曾玉刚, 张星, 秦莉, 刘云, 王立军 2012 发光学报 33 6]

    [11]

    Xu H W 2012 Ph. D. Dissertation (Changchun: Changchun Institute of Optics, Fine Mechanics and Physic, Chinese Academy of Sciences, China) (in Chinese) [徐华伟 2012 博士学位论文 (长春: 中科院长春光学精密机械与物理研究所)]

    [12]

    Masanobu W, Seiji M, Hideo I, Hiroyoshi Y 1990 J. Appl. Phys. 68 2599

    [13]

    Zhang X 2011 M. S. Thesis (Changchun: Changchun University of Science and Technology) (in Chinese) [张秀 2011 硕士学位论文 (长春: 长春理工大学)]

    [14]

    Richard A S, Joachim S, Klaus P 1991 IEEE J. Quantum Electron. 27 8

    [15]

    Cao S S 1996 Laser Technol. 20 3 (in Chinese) [曹三松 1996 激光技术 20 3]

    [16]

    Seiji M, Hiroyoshi Y 1984 IEEE J. Quantum Electron. QE-20 7

    [17]

    Jerome K B, Dan B 1984 IEEE J. Quantum Electron. QE-20 879

    [18]

    Reynolds C L, Holbrook W R, Shimer J A, Tharaldsen S M, Agrawal G P, Temkin H 1986 Electron. Lett. 22 1290

    [19]

    Zhang S, Liu S J, Cui B F, Li J J, Ji W, Chen J X, Wang X L, Su D J, Li J C 2014 Semicond. Opt. 35 1 (in Chinese) [张松, 刘素娟, 崔碧峰, 李建军, 计伟, 陈京湘, 王晓玲, 苏道军, 李佳莼 2014 半导体光电 35 1]

    [20]

    Zhang S 2014 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese) [张松 2014 硕士学位论文 (北京: 北京工业大学)]

  • [1] 王武越, 于宇, 李云飞, 王汞, 李凯, 王志永, 宋长禹, 李森森, 李宇海, 刘彤宇, 闫秀生, 王雨雷, 吕志伟. 脊型悬浮波导布里渊激光器.  , 2022, 71(2): 024203. doi: 10.7498/aps.71.20211539
    [2] 康达, 罗斌, 闫连山, 潘炜, 邹喜华. 含间隔层的增益导引-折射率反导引平面波导激光器中高阶模式抑制研究.  , 2018, 67(10): 104204. doi: 10.7498/aps.67.20180138
    [3] 安然, 范小贞, 卢建新, 文侨. 高光束质量、高功率稳定性激光器的设计及实验研究.  , 2018, 67(7): 074201. doi: 10.7498/aps.67.20171932
    [4] 周娅, 吴正茂, 樊利, 孙波, 何洋, 夏光琼. 基于椭圆偏振光注入垂直腔表面发射激光器的正交偏振模式单周期振荡产生两路光子微波.  , 2015, 64(20): 204203. doi: 10.7498/aps.64.204203
    [5] 沈文渊, 王虎, 耿志辉, 杜朝海, 刘濮鲲. 基于波导模式变换的圆波导TE62模式激励器的研究.  , 2013, 62(23): 238403. doi: 10.7498/aps.62.238403
    [6] 徐勇根, 王时建, 吉驭嫔, 徐竟跃, 卢宏, 刘晓旭, 张世昌. 拉曼型自由电子激光器中相对论电子运动稳定性的比较研究.  , 2013, 62(8): 084104. doi: 10.7498/aps.62.084104
    [7] 刘发, 徐晨, 赵振波, 周康, 解意洋, 毛明明, 魏思民, 曹田, 沈光地. 氧化孔形状对光子晶体垂直腔面发射激光器模式的影响.  , 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [8] 季海铭, 曹玉莲, 杨涛, 马文全, 曹青, 陈良惠. p型掺杂1.3μm InAs/GaAs量子点激光器的最大模式增益特性的研究.  , 2009, 58(3): 1896-1900. doi: 10.7498/aps.58.1896
    [9] 刘艳芬, 刘晶会, 贾 城. 侧向铁磁/铁磁超晶格的推迟模式.  , 2008, 57(3): 1897-1901. doi: 10.7498/aps.57.1897
    [10] 张秋琳, 苏红新, 孙 江, 郭庆林, 付广生. LD抽运被动调Q固体激光器的脉冲稳定性.  , 2007, 56(10): 5818-5820. doi: 10.7498/aps.56.5818
    [11] 封国林, 董文杰, 李建平, 丑纪范. 自忆模式中差分格式的稳定性研究.  , 2004, 53(7): 2389-2395. doi: 10.7498/aps.53.2389
    [12] 焦文涛, 辛建国. 射频激励板条波导CO2激光器远场空间压窄单峰输出模式特性的实验研究.  , 1999, 48(10): 1875-1883. doi: 10.7498/aps.48.1875
    [13] 贺凯芬. 负能模式在非线性不稳定性中的作用再探.  , 1996, 45(1): 1-12. doi: 10.7498/aps.45.1
    [14] 贺凯芬, 胡岗. 负能模式在驱动漂移波非线性不稳定性中的作用(Ⅰ)——向正能模式的转变和双稳态.  , 1993, 42(7): 1035-1041. doi: 10.7498/aps.42.1035
    [15] 贺凯芬, 胡岗. 负能模式在驱动漂移波非线性不稳定性中的作用(Ⅱ)——与正能模式交换,“回避交叉”和Hopf分岔.  , 1993, 42(7): 1042-1049. doi: 10.7498/aps.42.1042
    [16] 张立根, 陈楠鹏, 巴恩旭. 光反馈对CO2激光器不稳定性的影响.  , 1990, 39(2): 183-189. doi: 10.7498/aps.39.183
    [17] 王守武, 王启明, 林世鸣. 双稳激光器的不稳定性本质研究.  , 1986, 35(8): 1095-1101. doi: 10.7498/aps.35.1095
    [18] 潘少华. 染料激光器模式耦合半经典理论.  , 1981, 30(8): 1067-1076. doi: 10.7498/aps.30.1067
    [19] 霍裕平. 光受激发射的稳定性.  , 1964, 20(10): 954-969. doi: 10.7498/aps.20.954
    [20] 许鹏飞, 冯秉铨. 电子耦合振荡器之频率稳定性.  , 1950, 7(6): 72-80. doi: 10.7498/aps.7.72-2
计量
  • 文章访问数:  6980
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-07
  • 修回日期:  2017-01-30
  • 刊出日期:  2017-04-05

/

返回文章
返回
Baidu
map