搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于波导模式变换的圆波导TE62模式激励器的研究

沈文渊 王虎 耿志辉 杜朝海 刘濮鲲

引用本文:
Citation:

基于波导模式变换的圆波导TE62模式激励器的研究

沈文渊, 王虎, 耿志辉, 杜朝海, 刘濮鲲

Study of a W-band TE62 mode generator by the waveguide mode transformation

Shen Wen-Yuan, Wang Hu, Geng Zhi-Hui, Du Chao-Hai, Liu Pu-Kun
PDF
导出引用
  • 基于不规则波导模式匹配法以及缓变波导中电磁波模式耦合理论,研究了一种W波段圆波导TE62模式激励器. 该波导模式激励器采用矩形波导TE10模式通过侧壁耦合馈入同轴波导,利用同轴波导的选模特性激励TE61模式;随后利用轴向半径周期微扰的圆波导实现TE61–TE62模式变换. 文中推导了矩形-同轴波导模式匹配理论,系统研究了波导结构缓变参数对模式变换效率的影响,完成了模式变换器的优化仿真设计,数值计算结果表明:中心频率处TE62模式的转换效率为94.5%,纯度为98.16%,效率85%以上带宽达到1 GHz,能够满足回旋管冷测的要求.
    In this paper, based on the theory of mode-matching and the coupled wave theory, A W-band TE62 mode generator by using waveguide mode transformation is presented. Because of the eigen-mode selection of coaxial waveguide, a TE1 mode in standard rectangular waveguide is coupled into a coaxial waveguide to excite a TE61 mode by an aperture. A transition follows on it to change the coaxial waveguide into a circular one. Finally, TE61–TE62 mode converter is achieved by using a periodic radius perturbation in circular waveguide. Calculation and analysis of the relationship between the mode conversion efficiency and structure parameters of waveguide also are finished. The validity of this study is confirmed by using electromagnetic simulation software. The conversion efficiency of TE62 mode reaches 94.5% at the center frequency 95 GHz, and the mode purity reaches 98.16% The bandwidth of the efficiency above 85% reaches 1 GHz, which can meet the demand of the high–frequency cold test of gyrotrons.
    • 基金项目: 国家自然科学基金(批准号:61072026,61072024)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61072026, 61072024).
    [1]

    Liu P K, Xu S X 2003 Journal of Electronics and Information Technology 25 683 (in Chinese) [刘濮鲲, 徐寿喜 2003 电子与信息学报 25 683]

    [2]

    Dammertz G, Alberti S, Aronld A, Giguet E, LeGoff Y, Thumm M 2001 Fusion Engineering and Design. 53 561

    [3]

    Du C H, Xue Q Z, Liu P K 2010 Chin. Phys. B 19 048703

    [4]

    Sun Y Y, Zhang S C 2011 Acta Phys. Sin. 60 095201 (in Chinese) [孔艳岩, 张世昌 2011 60 095201]

    [5]

    Luo Y T, Tang C J, Liu C, Liu P K 2009 Acta Phys. Sin. 58 8174 (in Chinese) [罗尧天, 唐昌建, 刘畅, 刘濮鲲 2009 58 8174]

    [6]

    Jory H, Wagner D, Blank M, Chu S, Felch K 2001 Int. Journal of Infrared and Millimeter Waves. 22 1395

    [7]

    Alexandrov N L, Chirkov A V, Denisov G G, Vinogradov D V, Kasparek W, Pretterebner J, Wagner D 1992 Int. Journal of Infrared and Millimeter Waves. 13 1369

    [8]

    Li S F, Zhang C H, Wang Z, Chen H B, Hu L L, Pan W W, Guo F 2011 High Power Laser and Particle Beams 23 2174 (in Chinese) [李少甫, 张从会, 王忠, 陈洪斌, 胡林林, 潘文武, 郭峰 2011 强激光与粒子束 23 2174]

    [9]

    Alexandrov N L, Denisov G G, Whaley D R, Tran M Q 1995 Int. Journal of Electronics 79 215

    [10]

    Wang B, Liu P K, Geng Z H 2010 J. Infrared Millim. Wave 29 109 (in Chinese) [王斌, 刘濮鲲, 耿志辉 2010 红外与毫米波学报 29 109]

    [11]

    Wang B, Du C H, Liu P K, Geng Z H, Xu S X 2010 Acta Phys. Sin. 59 2512 (in Chinese) [王斌, 杜朝海, 刘濮鲲, 耿志辉, 徐寿喜 2010 59 2512]

    [12]

    Marek E, Bialkowski J, Bornemann V, Waris P, Paul W D 1995 IEEE. Trans. Microw. Theory Tech. 43 1875

    [13]

    McCurdy A H, Choi J J 1999 IEEE. Trans. Microw. Theory Tech. 47 164

    [14]

    Wang W X, Gong Y B, Yu G F, Yue L N, Sun J H 2003 IEEE. Trans. Microw. Theory Tech. 51 55

    [15]

    Chang T H, Li C H, Wu C N, Yu C F 2010 IEEE. Trans. Microw. Theory Tech. 58 1543

    [16]

    Peng W, Liu P K, Geng Z H 2010 Vacuum Electronics 5 1 (in Chinese) [彭伟, 刘濮鲲, 耿志辉 2010 真空电子技术 5 1]

    [17]

    Yang S W, Tan S H, Li H F 2000 Int. Journal of Infrared and Millimeter Waves, 21 219

    [18]

    Li H F, Thumm M 1991 Int. Journal of Electronics 71 827

    [19]

    Lan F, Yang Z Q, Shi Z J 2012 Acta Phys. Sin. 61 155 (in Chinese) [兰峰, 杨梓强, 史宗君 2012 61 155]

    [20]

    Du R B, Luo Y, Niu X J 2008 High Power Laser and Particle Beams 20 99 (in Chinese) [杜人波, 罗勇, 牛新建 2008 强激光与粒子束 20 99]

    [21]

    Niu X J, Li H F, Yu S, Xie Z L, Yang S W 2002 Acta Phys. Sin. 51 2291 (in Chinese) [牛新建, 李宏福, 喻胜, 谢仲怜, 杨仕文 2002 51 2291]

    [22]

    Yuan C W, Zhong H H, Liu Q X, Qian B L 2005 High Power Laser and Particle Beams 17 1251 (in Chinese) [袁成卫, 钟辉煌, 刘庆想, 钱保良 2005 强激光与粒子束 17 1251]

    [23]

    Niu X J, Gu L, Yu S, Li H F 2007 J. Infrared Millim. Wave 26 117 (in Chinese) [牛新建, 顾玲, 喻胜, 李宏福 2007 红外与毫米波学报 26 117]

    [24]

    Chen L W, Niu X J, Li X Y, Sun M 2004 J. Infrared Millim. Wave 23 51 (in Chinese) [陈立伟, 牛新建, 李晓燕, 孙敏 2004 红外与毫米波学报 23 51]

  • [1]

    Liu P K, Xu S X 2003 Journal of Electronics and Information Technology 25 683 (in Chinese) [刘濮鲲, 徐寿喜 2003 电子与信息学报 25 683]

    [2]

    Dammertz G, Alberti S, Aronld A, Giguet E, LeGoff Y, Thumm M 2001 Fusion Engineering and Design. 53 561

    [3]

    Du C H, Xue Q Z, Liu P K 2010 Chin. Phys. B 19 048703

    [4]

    Sun Y Y, Zhang S C 2011 Acta Phys. Sin. 60 095201 (in Chinese) [孔艳岩, 张世昌 2011 60 095201]

    [5]

    Luo Y T, Tang C J, Liu C, Liu P K 2009 Acta Phys. Sin. 58 8174 (in Chinese) [罗尧天, 唐昌建, 刘畅, 刘濮鲲 2009 58 8174]

    [6]

    Jory H, Wagner D, Blank M, Chu S, Felch K 2001 Int. Journal of Infrared and Millimeter Waves. 22 1395

    [7]

    Alexandrov N L, Chirkov A V, Denisov G G, Vinogradov D V, Kasparek W, Pretterebner J, Wagner D 1992 Int. Journal of Infrared and Millimeter Waves. 13 1369

    [8]

    Li S F, Zhang C H, Wang Z, Chen H B, Hu L L, Pan W W, Guo F 2011 High Power Laser and Particle Beams 23 2174 (in Chinese) [李少甫, 张从会, 王忠, 陈洪斌, 胡林林, 潘文武, 郭峰 2011 强激光与粒子束 23 2174]

    [9]

    Alexandrov N L, Denisov G G, Whaley D R, Tran M Q 1995 Int. Journal of Electronics 79 215

    [10]

    Wang B, Liu P K, Geng Z H 2010 J. Infrared Millim. Wave 29 109 (in Chinese) [王斌, 刘濮鲲, 耿志辉 2010 红外与毫米波学报 29 109]

    [11]

    Wang B, Du C H, Liu P K, Geng Z H, Xu S X 2010 Acta Phys. Sin. 59 2512 (in Chinese) [王斌, 杜朝海, 刘濮鲲, 耿志辉, 徐寿喜 2010 59 2512]

    [12]

    Marek E, Bialkowski J, Bornemann V, Waris P, Paul W D 1995 IEEE. Trans. Microw. Theory Tech. 43 1875

    [13]

    McCurdy A H, Choi J J 1999 IEEE. Trans. Microw. Theory Tech. 47 164

    [14]

    Wang W X, Gong Y B, Yu G F, Yue L N, Sun J H 2003 IEEE. Trans. Microw. Theory Tech. 51 55

    [15]

    Chang T H, Li C H, Wu C N, Yu C F 2010 IEEE. Trans. Microw. Theory Tech. 58 1543

    [16]

    Peng W, Liu P K, Geng Z H 2010 Vacuum Electronics 5 1 (in Chinese) [彭伟, 刘濮鲲, 耿志辉 2010 真空电子技术 5 1]

    [17]

    Yang S W, Tan S H, Li H F 2000 Int. Journal of Infrared and Millimeter Waves, 21 219

    [18]

    Li H F, Thumm M 1991 Int. Journal of Electronics 71 827

    [19]

    Lan F, Yang Z Q, Shi Z J 2012 Acta Phys. Sin. 61 155 (in Chinese) [兰峰, 杨梓强, 史宗君 2012 61 155]

    [20]

    Du R B, Luo Y, Niu X J 2008 High Power Laser and Particle Beams 20 99 (in Chinese) [杜人波, 罗勇, 牛新建 2008 强激光与粒子束 20 99]

    [21]

    Niu X J, Li H F, Yu S, Xie Z L, Yang S W 2002 Acta Phys. Sin. 51 2291 (in Chinese) [牛新建, 李宏福, 喻胜, 谢仲怜, 杨仕文 2002 51 2291]

    [22]

    Yuan C W, Zhong H H, Liu Q X, Qian B L 2005 High Power Laser and Particle Beams 17 1251 (in Chinese) [袁成卫, 钟辉煌, 刘庆想, 钱保良 2005 强激光与粒子束 17 1251]

    [23]

    Niu X J, Gu L, Yu S, Li H F 2007 J. Infrared Millim. Wave 26 117 (in Chinese) [牛新建, 顾玲, 喻胜, 李宏福 2007 红外与毫米波学报 26 117]

    [24]

    Chen L W, Niu X J, Li X Y, Sun M 2004 J. Infrared Millim. Wave 23 51 (in Chinese) [陈立伟, 牛新建, 李晓燕, 孙敏 2004 红外与毫米波学报 23 51]

  • [1] 任洋, 李振雄, 张磊, 崔巍, 吴雄雄, 霍亚杉, 何智慧. 基于法布里-珀罗腔的可调谐连续域束缚态及应用.  , 2024, 73(17): 174205. doi: 10.7498/aps.73.20240861
    [2] 惠战强, 高黎明, 刘瑞华, 韩冬冬, 汪伟. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器.  , 2022, 71(4): 048702. doi: 10.7498/aps.71.20211650
    [3] 惠战强. 低损耗大带宽双芯负曲率太赫兹光纤偏振分束器.  , 2021, (): . doi: 10.7498/aps.70.20211650
    [4] 李朝刚, 汪茂胜, 方泉, 彭雪城, 黄万霞. 表象变换和久期微扰理论在耦合杜芬方程中的应用.  , 2021, 70(2): 024601. doi: 10.7498/aps.70.20201057
    [5] 陈云天, 王经纬, 陈伟锦, 徐竞. 互易波导模式耦合理论.  , 2020, 69(15): 154206. doi: 10.7498/aps.69.20200194
    [6] 朱存远, 李朝刚, 方泉, 汪茂胜, 彭雪城, 黄万霞. 用久期微扰理论将弹簧振子模型退化为耦合模理论.  , 2020, 69(7): 074501. doi: 10.7498/aps.69.20191505
    [7] 付兴虎, 谢海洋, 杨传庆, 张顺杨, 付广伟, 毕卫红. 基于包层模谐振的三包层石英特种光纤温度传感特性研究.  , 2016, 65(2): 024211. doi: 10.7498/aps.65.024211
    [8] 徐刚, 谢平, 廖勇. X波段过模弯曲圆波导TM01-HE11模式变换器研究.  , 2013, 62(7): 078401. doi: 10.7498/aps.62.078401
    [9] 裴丽, 赵瑞峰. 统一非对称光波导横向耦合模理论分析.  , 2013, 62(18): 184213. doi: 10.7498/aps.62.184213
    [10] 王虎, 沈文渊, 耿志辉, 徐寿喜, 王斌, 杜朝海, 刘濮鲲. 高功率回旋振荡管Denisov型辐射器的研究.  , 2013, 62(23): 238401. doi: 10.7498/aps.62.238401
    [11] 曾维友, 谢康, 陈伟, 毛书哲. TE-TM模变换型光波导隔离器的理论研究.  , 2012, 61(16): 164201. doi: 10.7498/aps.61.164201
    [12] 刘静, 舒挺, 李志强. 同轴波导虚阴极振荡器二极管参数优化的研究.  , 2011, 60(10): 105202. doi: 10.7498/aps.60.105202
    [13] 刘静, 舒挺, 李志强. 新型反馈式轴向同轴虚阴极振荡器.  , 2010, 59(4): 2629-2634. doi: 10.7498/aps.59.2629
    [14] 李鹏, 赵建林, 张晓娟, 侯建平. 三角结构三芯光子晶体光纤中的模式耦合特性分析.  , 2010, 59(12): 8625-8631. doi: 10.7498/aps.59.8625
    [15] 林旭升, 吴立军, 郭 旗, 胡 巍, 兰 胜. 条形耦合波导对光子晶体耦合缺陷模的影响.  , 2008, 57(12): 7717-7724. doi: 10.7498/aps.57.7717
    [16] 於陆勒, 盛政明, 张 杰. 均匀等离子体光栅的色散特性研究.  , 2008, 57(10): 6457-6464. doi: 10.7498/aps.57.6457
    [17] 王燕花, 任文华, 刘 艳, 谭中伟, 简水生. 相位修正的耦合模理论用于计算光纤Bragg光栅法布里-珀罗腔透射谱.  , 2008, 57(10): 6393-6399. doi: 10.7498/aps.57.6393
    [18] 王目光, 魏 淮, 简水生. 复合型双周期光纤光栅的理论与实验研究.  , 2003, 52(3): 609-614. doi: 10.7498/aps.52.609
    [19] 牛新建, 李宏福, 喻胜, 谢仲怜, 杨仕文. 8mm高功率过模弯曲圆波导TE01—TM11模式变换.  , 2002, 51(10): 2291-2295. doi: 10.7498/aps.51.2291
    [20] 李松茂, 王奇, 吴中, 卫青. Kerr类非线性介质周期结构中的慢Bragg孤子.  , 2001, 50(3): 489-495. doi: 10.7498/aps.50.489
计量
  • 文章访问数:  6365
  • PDF下载量:  470
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-07-04
  • 修回日期:  2013-07-31
  • 刊出日期:  2013-12-05

/

返回文章
返回
Baidu
map