-
基于射线辐照条件下单轴应变Si纳米n型金属氧化物半导体场效应晶体管(NMOSFET)载流子的微观输运机制,揭示了单轴应变Si纳米NMOSFET器件电学特性随总剂量辐照的变化规律,同时基于量子机制建立了小尺寸单轴应变Si NMOSFET在射线辐照条件下的栅隧穿电流模型,应用Matlab对该模型进行了数值模拟仿真,探究了总剂量、器件几何结构参数、材料物理参数等对栅隧穿电流的影响.此外,通过实验进行对比,该模型仿真结果和总剂量辐照实验测试结果基本符合,从而验证了模型的可行性.本文所建模型为研究纳米级单轴应变Si NMOSFET应变集成器件可靠性及电路的应用提供了有价值的理论指导与实践基础.
-
关键词:
- 单轴应变Si /
- 纳米n型金属氧化物半导体场效应晶体管 /
- 总剂量 /
- 栅隧穿电流
The carrier microscopic transport process of uniaxial strained Si n-channel metal-oxide-semiconductor field-effect transistor (NMOSFET) is analyzed under -ray radiation. The model of radiation-induced defect densities that are quantitative representations of trapped charges integrated across the thickness of the oxide (Not), and the number of interface traps at the semiconductor/oxide interface (Nit), is established. The variations of electrical characteristics of the uniaxial strained Si nanometer NMOSFET are also investigated under the total dose radiation. The device of uniaxial strained Si nanometer NMOSTET is irradiated by a 60Co -ray laboratory source at a constant dose rate of 0.5 Gy (Si)/s. The TID is deposited in several steps up to a maximum value of 2.5 kGy. Electrical measurements are performed at each TID step. All irradiated samples are measured using field test, and are required to finish measurement within 30 min, in order to reduce the annealing effect. Static drain-current ID vs. gate-voltage VGS electrical characteristics are measured with an HP4155B parametric analyzer. Some parameter extractions presented here come from these static measurements including the threshold voltage VTH, the trans-conductance gm, and the leakage current IOFF (ID at VGS=0 V and VDS=VDD). Irradiation bias:VG=+1 V, drain voltage VD is equal to source voltage VS (VD=VS=0). Measurement bias:VG=0-1 V, scanning voltage Vstep=0.05 V, VD=50 mV, and VS=0. The results indicate the drift of threshold voltage, the degradation of carrier mobility and the increase of leakage current because of the total dose radiation. Based on quantum mechanics, an analytical model of tunneling gate current of the uniaxial strained Si nanometer is developed due to the total dose irradiation effect. Based on this model, numerical simulation is carried out by Matlab. The influences of total dose, geometry and physics parameters on tunneling gate current are simulated. The simulation results show that when radiation dose and bias are constant, the tunneling gate current increases as the channel length decreases. When the structure parameters and the stress are fixed, the tunneling gate current increases with the increase of radiation dose. Whereas at a given the radiation dose, tunneling gate current will decrease due to the stress. When radiation dose and bias are kept unchanged, the tunneling gate current increases with the thickness of the gate oxide layer decresing. When the gate-source voltage, the thickness of oxide layer and stress are fixed, tunneling gate current is reduced with the increase of doping concentration in channel. When the structural parameters, the gate-source voltage and radiation dose are constant, the tunneling gate current decreases with increasing drain-source voltage. In addition, to evaluate the validity of the model, the simulation results are compared with experimental data, and good agreement is confirmed. Thus, the experimental results and proposed model provide good reference for research on irradiation reliability and application of strained integrated circuit of uniaxial strained Si nanometer n-channel metal-oxide-semiconductor field-effect transistor.-
Keywords:
- uniaxial strained Si /
- nanometer NMOSFET /
- total dose /
- tunneling gate current
[1] Chaves F A, Jimnez D, Garca Ruiz F J, Godoy A, Su J 2012 IEEE Trans. Electron Dev. 59 2589
[2] Chen W B, Xu J P, Zou X, Li Y P, Xu S G, Hu Z F 2006 Acta Phys. Sin. 55 5036 (in Chinese)[陈卫兵, 徐静平, 邹晓, 李艳萍, 许胜国, 胡致富2006 55 5036]
[3] Rodrguez-Ruiz G A, Gutirrez-Domnguez E A, Sarmiento-Reyes A, Stanojevic Z, Kosina H, Guarin F J, Garca-Ramrez P J 2015 IEEE Electron Dev. Lett. 36 387
[4] Ghetti A, Sangiorgi E, Bude J 2000 IEEE Trans. Electron Dev. 47 2358
[5] Hu H Y, Liu X Y, Lian Y C, Zhang H M, Song J J, Xuan R X, Shu B 2014 Acta Phys. Sin. 63 236102 (in Chinese)[胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌2014 63 236102]
[6] Huang R, Zhang G Y, Li Y X, Zhang X 2005 SOI CMOS Technologies and Applications (Beijing:Science Press) p3(in Chinese)[黄如, 张国艳, 李映雪, 张兴2005 SOI CMOS技术及其应用(北京:科学出版社)第3页]
[7] Zheng Q W, Yu X F, Cui J W, Guo Q, Ren D Y, Cong Z C, Zhou H 2014 Chin. Phys. B 23 106102
[8] Zhao Q W, Zhuang Y Q, Bao J L, Hu H 2016 Chin. Phys. B 25 046104
[9] Sun X, Xue F, Chen J, Zhang E X, Cui S, Lee J, Fleetwood D M, Ma T P 2013 IEEE Trans. Nucl. Sci. 60 402
[10] Liu H X, Zhuo Q Q, Wang Z, Wang Q Q 2014 Acta Phys. Sin. 63 016102 (in Chinese)[刘红侠, 王志, 卓青青, 王倩琼2014 63 016102]
[11] Ceschia M, Paccagnella A, Scarpa A, Ghidini G 1998 IEEE Trans. Nucl. Sci. 45 2375
[12] Cho B J, Kim S J, Ling C H, Joo M S, Yeo I S 1999 Proceedings of the 7th International Symposium on Physical and Failure Analysis of Integrated Circuits p30
[13] Mou W B, Xu X 2005 High Power Laser Particle Beams 17 309 (in Chinese)[牟维兵, 徐曦2005强激光与粒子束17 309]
[14] Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Ferlet-Cavrois P P V 2008 IEEE Trans. Nucl. Sci. 55 1833
[15] Kamimura H, Akiyama M, Kuboyama S 1994 J. Nucl. Sci. Technol. 31 24
[16] Bordallo C C M, Teixeira F F, Silveira M A G, Agopian P G D, Simoen E, Claeys C, Martino J A 2013 IEEE Radiation and Its Effects on Components and Systems (RADECS), 14th European Conference on p1-4
[17] Kamimura H, Yoshioka S, Akiyama M, Kuboyama S 1994 IEEE Trans. Nucl. Sci. 31 24
[18] Wu H Y, Zhang H M, Song J J, Hu H Y 2011 Acta Phys. Sin. 60 097302 (in Chinese)[吴华英, 张鹤鸣, 宋建军, 胡辉勇2011 60 097302]
[19] Wu H, Zhao Y, White M H 2006 Solid State Electron 50 1164
[20] Ungersboeck E, Dhar S, Karlowatz G 2007 J. Conput. Electron. 6 55
[21] Lim J S, Yang X, Nishida T, Thompson S E 2006 Appl. Phys. Lett. 89 073509
[22] Hsieh C Y, Chen M J 2007 IEEE Electron Dev. Lett. 28 818
[23] Irisawa T, Numata T, Toyoda E 2007 Symposium on VLSI Technology Digest of Technolcal p36
[24] Ghatak A, Lokanathan S 2004 Quantum Mechanics Theory and Application (5th Ed.) (New Delhi, India:McMillan) p380
[25] Zhao Y J, White M H 2004 Solid State Electron. 48 1801
-
[1] Chaves F A, Jimnez D, Garca Ruiz F J, Godoy A, Su J 2012 IEEE Trans. Electron Dev. 59 2589
[2] Chen W B, Xu J P, Zou X, Li Y P, Xu S G, Hu Z F 2006 Acta Phys. Sin. 55 5036 (in Chinese)[陈卫兵, 徐静平, 邹晓, 李艳萍, 许胜国, 胡致富2006 55 5036]
[3] Rodrguez-Ruiz G A, Gutirrez-Domnguez E A, Sarmiento-Reyes A, Stanojevic Z, Kosina H, Guarin F J, Garca-Ramrez P J 2015 IEEE Electron Dev. Lett. 36 387
[4] Ghetti A, Sangiorgi E, Bude J 2000 IEEE Trans. Electron Dev. 47 2358
[5] Hu H Y, Liu X Y, Lian Y C, Zhang H M, Song J J, Xuan R X, Shu B 2014 Acta Phys. Sin. 63 236102 (in Chinese)[胡辉勇, 刘翔宇, 连永昌, 张鹤鸣, 宋建军, 宣荣喜, 舒斌2014 63 236102]
[6] Huang R, Zhang G Y, Li Y X, Zhang X 2005 SOI CMOS Technologies and Applications (Beijing:Science Press) p3(in Chinese)[黄如, 张国艳, 李映雪, 张兴2005 SOI CMOS技术及其应用(北京:科学出版社)第3页]
[7] Zheng Q W, Yu X F, Cui J W, Guo Q, Ren D Y, Cong Z C, Zhou H 2014 Chin. Phys. B 23 106102
[8] Zhao Q W, Zhuang Y Q, Bao J L, Hu H 2016 Chin. Phys. B 25 046104
[9] Sun X, Xue F, Chen J, Zhang E X, Cui S, Lee J, Fleetwood D M, Ma T P 2013 IEEE Trans. Nucl. Sci. 60 402
[10] Liu H X, Zhuo Q Q, Wang Z, Wang Q Q 2014 Acta Phys. Sin. 63 016102 (in Chinese)[刘红侠, 王志, 卓青青, 王倩琼2014 63 016102]
[11] Ceschia M, Paccagnella A, Scarpa A, Ghidini G 1998 IEEE Trans. Nucl. Sci. 45 2375
[12] Cho B J, Kim S J, Ling C H, Joo M S, Yeo I S 1999 Proceedings of the 7th International Symposium on Physical and Failure Analysis of Integrated Circuits p30
[13] Mou W B, Xu X 2005 High Power Laser Particle Beams 17 309 (in Chinese)[牟维兵, 徐曦2005强激光与粒子束17 309]
[14] Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Ferlet-Cavrois P P V 2008 IEEE Trans. Nucl. Sci. 55 1833
[15] Kamimura H, Akiyama M, Kuboyama S 1994 J. Nucl. Sci. Technol. 31 24
[16] Bordallo C C M, Teixeira F F, Silveira M A G, Agopian P G D, Simoen E, Claeys C, Martino J A 2013 IEEE Radiation and Its Effects on Components and Systems (RADECS), 14th European Conference on p1-4
[17] Kamimura H, Yoshioka S, Akiyama M, Kuboyama S 1994 IEEE Trans. Nucl. Sci. 31 24
[18] Wu H Y, Zhang H M, Song J J, Hu H Y 2011 Acta Phys. Sin. 60 097302 (in Chinese)[吴华英, 张鹤鸣, 宋建军, 胡辉勇2011 60 097302]
[19] Wu H, Zhao Y, White M H 2006 Solid State Electron 50 1164
[20] Ungersboeck E, Dhar S, Karlowatz G 2007 J. Conput. Electron. 6 55
[21] Lim J S, Yang X, Nishida T, Thompson S E 2006 Appl. Phys. Lett. 89 073509
[22] Hsieh C Y, Chen M J 2007 IEEE Electron Dev. Lett. 28 818
[23] Irisawa T, Numata T, Toyoda E 2007 Symposium on VLSI Technology Digest of Technolcal p36
[24] Ghatak A, Lokanathan S 2004 Quantum Mechanics Theory and Application (5th Ed.) (New Delhi, India:McMillan) p380
[25] Zhao Y J, White M H 2004 Solid State Electron. 48 1801
计量
- 文章访问数: 5789
- PDF下载量: 189
- 被引次数: 0