搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于阻性阳极读出方法的气体电子倍增器二维成像性能

鞠旭东 董明义 周传兴 董静 赵豫斌 章红宇 祁辉荣 欧阳群

引用本文:
Citation:

基于阻性阳极读出方法的气体电子倍增器二维成像性能

鞠旭东, 董明义, 周传兴, 董静, 赵豫斌, 章红宇, 祁辉荣, 欧阳群

Study of the two dimensional imaging performance for the gas electron multiplier using the resistive anode readout method

Ju Xu-Dong, Dong Ming-Yi, Zhou Chuan-Xing, Dong Jing, Zhao Yu-Bin, Zhang Hong-Yu, Qi Hui-Rong, Ouyang Qun
PDF
导出引用
  • 新型微结构气体探测器,如气体电子倍增器(gas electron multiplier,GEM)等,具有非常好的位置分辨率潜力(100 m),但是需要匹配大规模高密度的读出电子学,给探测器的建设、造价、功耗、空间利用等带来极大压力.阻性阳极读出方法可以在保持较高位置分辨率的前提下,大幅节省电子学.基于厚膜电阻工艺,一种新的阻性单元阵列结构被成功开发和应用于三级级联GEM探测器的读出阳极.该阻性阳极包括66个6 mm6 mm的基本阻性单元,仅需匹配49路读出电子学.55Fe放射源(5.9 keV)和X光机(8 keV)实验的结果显示探测器的位置分辨率()可好于80 m,位置非线性好于1.5%.同时,探测器还获得了很好的实物成像效果.探测器的优良性能表明这种阻性阳极读出方法适用于大面积二维成像气体探测器的读出,并可用于其他探测器的读出.
    The new type of micro-pattern gaseous detector (MPGD) like the gas electron multiplier (GEM), features the advantage of good spatial resolution ( 100 m). However, abundant and high density electronic channels are needed to obtain the high spatial resolution, which will lead to a great pressure on the detector construction, power consumption, spatial utilization, etc. The resistive anode readout method can help to obtain a good spatial resolution comparable to the pixel readout structure with an enormous reduction of the electronic channels. By using the thick film resistor technology, a new type of resistive structure, composed of high resistive square pad array with low resistive narrow border strips, is developed and applied to the readout anode of the triple GEM detector. For the resistive anode readout board used in the experiment, there are 66 resistive cells, which means that the detector needs only 49 electronics channels. To obtain a good spatial resolution, the cell size is set to be 6 mm6 mm. The surface resistivity of the pads and the strips are 150 k/□ and 1 k/□, respectively. The performances of the detector, especially the two-dimensional imaging performance, are studied by using a 55Fe (5.9 keV) source and an X ray tube (8 keV). The test results show that the spatial resolution of the detector is better than 80 m () by using the imaging of a 40 m wide slot, and the nonlinearity is better than 1.5% by the scanning along the x-axis of the readout board in the steps of 1 mm. Furthermore, quite a good two-dimensional imaging capability is achieved by the detector. These good performances of the detector show the feasibility of the resistive anode readout method for the GEM detector with large area and other detectors with similar structures in the two-dimensional imaging applications.
      通信作者: 董明义, dongmy@ihep.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11375219)资助的课题.
      Corresponding author: Dong Ming-Yi, dongmy@ihep.ac.cn
    • Funds: Project supported by National Natural Science Foundation of China (Grant No. 11375219).
    [1]

    Sauli F 1997 Nucl. Instrum.Meth. A 386 531

    [2]

    Dong J, L X Y, Liu B, Liu R G, Ma X Y, Wang L, Chen Y B, Ouyang Q, Xie Y G 2010 Acta Phys. Sin. 59 6029 (in Chinese)[董静, 吕新宇, 刘贲, 刘荣光, 马骁妍, 王岚, 陈元柏, 欧阳群, 谢一冈2010 59 6029]

    [3]

    Fan S N, Wang B, Qi H R, Liu M, Zhang Y L, Zhang J, Liu R G, Yi F T, Ouyang Q, Chen Y B 2013 Acta Phys. Sin. 62 122901 (in Chinese)[范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏2013 62 122901]

    [4]

    Fan R R, Hou F J, Ouyang Q, Fan S N, Chen Y B, Yi F T 2012 Acta Phys. Sin. 61 092901 (in Chinese)[樊瑞睿, 侯凤杰, 欧阳群, 范胜男, 陈元柏, 伊福廷2012 61 092901]

    [5]

    Yang H R, Hu B T, Duan L M, Xu H S, Li C Y, Li Z Y, Zhang X D 2008 Acta Phys. Sin. 57 2141 (in Chinese)[杨贺润, 胡碧涛, 段利敏, 徐瑚珊, 李春艳, 李祖玉, 张小东2008 57 2141]

    [6]

    Shekhtman L 2002 Nucl. Instrum. Meth. A 494 128

    [7]

    Maxim T 2013 Modern Phys. Lett. A 28 1340022

    [8]

    Liu J B 2005 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[刘建北2005博士学位论文(北京:中国科学院大学)]

    [9]

    Altunbas M C 2002 Nucl. Instrum. Meth. A 490 177

    [10]

    Guedes G P, Breskin A, Chechik R, Vartsky D, Bar D, Barbosa A F, Marinho P R B 2003 Nucl. Instrum. Meth. A 513 473

    [11]

    Zhang A W, Bhopatkar V, Hansen E, Hohlmann M, Khanal S, Phipps M, Starling E, Twigger J, Walton K 2016 Nucl. Instrum. Meth. A 811 30

    [12]

    Doke T, Kikuchi J, Yamaguchi H, Yamaguchi S, Yamamura K 1987 Nucl. Instrum. Meth. A 261 605

    [13]

    Lampton M, Carlson C W 1979 Rev. Sci. Instrum. 50 1093

    [14]

    Banu A, Li Y, McCleskey M, Bullough M, Walsh S, Gagliardi C A, Trache L, Tribble R E, Wilburn C 2008 Nucl. Instrum. Meth. A 593 399

    [15]

    Sarvestani A, Besch H J, Junk M, Meissner W, Pavel N, Sauer N, Stiehler R, Walenta A H, Menk R H 2008 Nucl. Instrum. Meth. A 419 444

    [16]

    Wagner H, Besch H J, Menk R H, Orthen A, Sarvestani A, Walenta A H, Walliser H 2002 Nucl. Instrum. Meth. A 482 334

    [17]

    Wagner H, Orthen A, Besch H J, Martoiu S, Menk R H, Walenta A H, Werthenbach U 2004 Nucl. Instrum. Meth. A 523 287

    [18]

    Dong M Y, Xiu Q L, Liu R G, Zhang J, Ouyang Q, Chen Y B 2013 Chin. Phys. C 37 026002

    [19]

    Ju X D, Dong M Y, Zhao Y C, Zhou C X, Ouyang Q 2016 Chin. Phys. C 40 086004

    [20]

    Xiu Q L, Dong M Y, Liu R G, Zhang J, Ouyang Q, Chen Y B 2013 Chin. Phys. C 37 106002

    [21]

    Ju X D 2016 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[鞠旭东2016博士学位论文(北京:中国科学院大学)]

    [22]

    Zhao Y C, Dong M Y, Ju X D, Zhou C X, Ouyang Q, Zhao S J 2016 Nucl. Electron. Detect. Technol. 36 565 (in Chinese)[赵逸琛, 董明义, 鞠旭东, 周传兴, 欧阳群, 赵书俊2016核电子学与探测技术36 565]

    [23]

    L X Y, Fan R R, Chen Y B, Ouyang Q, Liu R G, Liu P, Qi H R, Zhang J, Zhao P P, Zhao D X, Zhao Y B, Zhang H Y, Sheng H Y, Dong L Y 2012 Chin. Phys. C 36 228

    [24]

    Zhu Y S 2006 Probability and Statistics in Experimental Physics (Beijing:The Science Publishing Company) p148(in Chinese)[朱永生2006实验物理中的概率和统计(北京:科学出版社)第148页]

  • [1]

    Sauli F 1997 Nucl. Instrum.Meth. A 386 531

    [2]

    Dong J, L X Y, Liu B, Liu R G, Ma X Y, Wang L, Chen Y B, Ouyang Q, Xie Y G 2010 Acta Phys. Sin. 59 6029 (in Chinese)[董静, 吕新宇, 刘贲, 刘荣光, 马骁妍, 王岚, 陈元柏, 欧阳群, 谢一冈2010 59 6029]

    [3]

    Fan S N, Wang B, Qi H R, Liu M, Zhang Y L, Zhang J, Liu R G, Yi F T, Ouyang Q, Chen Y B 2013 Acta Phys. Sin. 62 122901 (in Chinese)[范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏2013 62 122901]

    [4]

    Fan R R, Hou F J, Ouyang Q, Fan S N, Chen Y B, Yi F T 2012 Acta Phys. Sin. 61 092901 (in Chinese)[樊瑞睿, 侯凤杰, 欧阳群, 范胜男, 陈元柏, 伊福廷2012 61 092901]

    [5]

    Yang H R, Hu B T, Duan L M, Xu H S, Li C Y, Li Z Y, Zhang X D 2008 Acta Phys. Sin. 57 2141 (in Chinese)[杨贺润, 胡碧涛, 段利敏, 徐瑚珊, 李春艳, 李祖玉, 张小东2008 57 2141]

    [6]

    Shekhtman L 2002 Nucl. Instrum. Meth. A 494 128

    [7]

    Maxim T 2013 Modern Phys. Lett. A 28 1340022

    [8]

    Liu J B 2005 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[刘建北2005博士学位论文(北京:中国科学院大学)]

    [9]

    Altunbas M C 2002 Nucl. Instrum. Meth. A 490 177

    [10]

    Guedes G P, Breskin A, Chechik R, Vartsky D, Bar D, Barbosa A F, Marinho P R B 2003 Nucl. Instrum. Meth. A 513 473

    [11]

    Zhang A W, Bhopatkar V, Hansen E, Hohlmann M, Khanal S, Phipps M, Starling E, Twigger J, Walton K 2016 Nucl. Instrum. Meth. A 811 30

    [12]

    Doke T, Kikuchi J, Yamaguchi H, Yamaguchi S, Yamamura K 1987 Nucl. Instrum. Meth. A 261 605

    [13]

    Lampton M, Carlson C W 1979 Rev. Sci. Instrum. 50 1093

    [14]

    Banu A, Li Y, McCleskey M, Bullough M, Walsh S, Gagliardi C A, Trache L, Tribble R E, Wilburn C 2008 Nucl. Instrum. Meth. A 593 399

    [15]

    Sarvestani A, Besch H J, Junk M, Meissner W, Pavel N, Sauer N, Stiehler R, Walenta A H, Menk R H 2008 Nucl. Instrum. Meth. A 419 444

    [16]

    Wagner H, Besch H J, Menk R H, Orthen A, Sarvestani A, Walenta A H, Walliser H 2002 Nucl. Instrum. Meth. A 482 334

    [17]

    Wagner H, Orthen A, Besch H J, Martoiu S, Menk R H, Walenta A H, Werthenbach U 2004 Nucl. Instrum. Meth. A 523 287

    [18]

    Dong M Y, Xiu Q L, Liu R G, Zhang J, Ouyang Q, Chen Y B 2013 Chin. Phys. C 37 026002

    [19]

    Ju X D, Dong M Y, Zhao Y C, Zhou C X, Ouyang Q 2016 Chin. Phys. C 40 086004

    [20]

    Xiu Q L, Dong M Y, Liu R G, Zhang J, Ouyang Q, Chen Y B 2013 Chin. Phys. C 37 106002

    [21]

    Ju X D 2016 Ph. D. Dissertation (Beijing:University of Chinese Academy of Sciences) (in Chinese)[鞠旭东2016博士学位论文(北京:中国科学院大学)]

    [22]

    Zhao Y C, Dong M Y, Ju X D, Zhou C X, Ouyang Q, Zhao S J 2016 Nucl. Electron. Detect. Technol. 36 565 (in Chinese)[赵逸琛, 董明义, 鞠旭东, 周传兴, 欧阳群, 赵书俊2016核电子学与探测技术36 565]

    [23]

    L X Y, Fan R R, Chen Y B, Ouyang Q, Liu R G, Liu P, Qi H R, Zhang J, Zhao P P, Zhao D X, Zhao Y B, Zhang H Y, Sheng H Y, Dong L Y 2012 Chin. Phys. C 36 228

    [24]

    Zhu Y S 2006 Probability and Statistics in Experimental Physics (Beijing:The Science Publishing Company) p148(in Chinese)[朱永生2006实验物理中的概率和统计(北京:科学出版社)第148页]

  • [1] 黄礼胜, 罗荣祥. 二维气体模型中的负微分热阻.  , 2023, 72(1): 010501. doi: 10.7498/aps.72.20221498
    [2] 郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮. 超分辨率超快超声脊髓微血管成像方法.  , 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [3] 隋怡晖, 郭星奕, 郁钧瑾, Alexander A. Solovev, 他得安, 许凯亮. 生成对抗网络加速超分辨率超声定位显微成像方法研究.  , 2022, 71(22): 224301. doi: 10.7498/aps.71.20220954
    [4] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国. 基于深紫外激光-光发射电子显微技术的高分辨率磁畴成像.  , 2020, 69(9): 096801. doi: 10.7498/aps.69.20200083
    [5] 高强, 李小秋, 周志鹏, 孙磊. 基于分形谐振器的远场超分辨率扫描成像.  , 2019, 68(24): 244102. doi: 10.7498/aps.68.20190620
    [6] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像.  , 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [7] 温志文, 祁辉荣, 王艳凤, 孙志嘉, 张余炼, 王海云, 张建, 欧阳群, 陈元柏, 李玉红. 二维多丝室探测器读出方法的优化.  , 2017, 66(7): 072901. doi: 10.7498/aps.66.072901
    [8] 张余炼, 祁辉荣, 胡碧涛, 温志文, 王海云, 欧阳群, 陈元柏, 张建. 基于复合结构的气体电子倍增器增益模拟和实验研究.  , 2017, 66(14): 142901. doi: 10.7498/aps.66.142901
    [9] 李金洋, 逯丹凤, 祁志美. 集成光波导静态傅里叶变换微光谱仪分辨率倍增方法.  , 2015, 64(11): 114207. doi: 10.7498/aps.64.114207
    [10] 李杰, 朱京平, 张云尧, 刘宏, 侯洵. 光谱分辨率可调的新型干涉成像光谱技术研究.  , 2013, 62(2): 024205. doi: 10.7498/aps.62.024205
    [11] 张文喜, 相里斌, 孔新新, 李杨, 伍洲, 周志盛. 相干场成像技术分辨率研究.  , 2013, 62(16): 164203. doi: 10.7498/aps.62.164203
    [12] 王芳, 赵星, 杨勇, 方志良, 袁小聪. 基于人眼视觉的集成成像三维显示分辨率的比较.  , 2012, 61(8): 084212. doi: 10.7498/aps.61.084212
    [13] 卢婧, 李昊, 何毅, 史国华, 张雨东. 超分辨率活体人眼视网膜共焦扫描成像系统.  , 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [14] 吴丹, 陶超, 刘晓峻. 有限方位扫描的光声断层成像分辨率研究.  , 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [15] 代秋声, 漆玉金. 针孔单光子发射计算机断层成像的空间分辨率研究.  , 2010, 59(2): 1357-1365. doi: 10.7498/aps.59.1357
    [16] 董静, 吕新宇, 刘贲, 刘荣光, 马骁妍, 王岚, 陈元柏, 欧阳群, 谢一冈. 基于读出条读出的二维位置灵敏气体电子倍增器的研制.  , 2010, 59(9): 6029-6035. doi: 10.7498/aps.59.6029
    [17] 赵贵敏, 陆明珠, 万明习, 方莉. 高分辨率扇形阵列超声激发振动声成像研究.  , 2009, 58(9): 6596-6603. doi: 10.7498/aps.58.6596
    [18] 向良忠, 邢达, 郭华, 杨思华. 高分辨率快速数字化光声CT乳腺肿瘤成像.  , 2009, 58(7): 4610-4617. doi: 10.7498/aps.58.4610
    [19] 司福祺, 谢品华, Klaus-Peter Heue, 刘 诚, 彭夫敏, 刘文清. 超光谱成像差分吸收光谱技术研究.  , 2008, 57(9): 6018-6023. doi: 10.7498/aps.57.6018
    [20] 刘华锋. 利用作用深度信息提高正电子断层成像仪分辨率一致性.  , 2006, 55(10): 5186-5190. doi: 10.7498/aps.55.5186
计量
  • 文章访问数:  5878
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-24
  • 修回日期:  2017-01-10
  • 刊出日期:  2017-04-05

/

返回文章
返回
Baidu
map