搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无序效应对1T-TaS2材料中Mott绝缘相的影响

赵洋洋 宋筠

引用本文:
Citation:

无序效应对1T-TaS2材料中Mott绝缘相的影响

赵洋洋, 宋筠

Anderson localization effect on Mott phase in 1T-TaS2

Zhao Yang-Yang, Song Yun
PDF
导出引用
  • 电子强关联效应使得过渡金属硫化物1T-TaS2在低温时为Mott绝缘体,而层间堆叠错位及杂质又会引入相当强的无序效应.利用统计动力学平均场理论数值方法研究了无序效应对Mott绝缘相的影响,发现非对角跃迁无序和对角无序效应均不会引起从绝缘体到金属的相变.杂质引入的对角无序达到一定强度后Mott能隙会完全闭合,而堆叠错位引入的非对角跃迁无序不论多强都无法关闭Mott能隙.在半满情况,非对角无序会导致上下Hubard带对称地分别出现一个奇异态,而通过晶格尺寸标度研究证明了这种反常的电子态仍然是Anderson局域态.
    In the layered dichalcogenide 1T-TaS2, whether there is a disorder-driven transition from insulator to metal is still a matter in dispute. It is predicted that the commensurate charge density wave (CCDW) phase at low temperature behaves as a Mott insulator due to the strong correlation of electrons. Meanwhile, the stacking of TaS layers is found to be dislocated along the c axis, which will introduce considerable effect of disorder. Therefore, further theoretical study is needed to show the cooperative effect of correlation and disorder in 1T-TaS2. The statistical dynamical mean-field theory, which treats interactions and disorder on an equal footing, is used to study the effect of disorder on the Mott insulating phase in 1T-TaS2. Two different kinds of disorder effects are considered in the one-dimensional extended Anderson-Hubbard model, where the stacking dislocation of TaS layers is described by the off-diagonal hopping disorder and the diagonal disorder term represents the effect of disorder introduced by impurities. We find that the off-diagonal disorder by itself could not close the Mott gap at Fermi level, suggesting that Mott mechanism should be more dominant in the CCDW phase of 1T-TaS2 with the stacking dislocation of TaS layers. On the other hand, the diagonal disorder introduced by impurities will close the Mott gap when the strength of disorder (W) is larger than the correlation of electrons (U). Proved by the lattice-size scaling of the generalized inverse participation ratio, both the off-diagonal disorder and diagonal disorder can make all states Anderson-localized. As a result, there is no disorder-induced metal-insulator transition in a correlated system with either off-diagonal disorder or diagonal disorder. In addition, an anomalistic state is introduced by the off-diagonal disorder at the center of the energy band of the non-interacting system, which is a special Anderson-localized state with a very larger localization length. In the correlated cases, the electron-electron interactions have strong effect on splitting the anomalistic state into two individual states, which are located symmetrically in both the upper and lower Hubbard subbands with an energy interval U.
      通信作者: 宋筠, yunsong@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11174036,11474023)、国家重点基础研究发展计划(批准号:2011CBA00108)和中央高校基本科研业务费资助的课题.
      Corresponding author: Song Yun, yunsong@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174036, 11474023), the National Basic Research Program of China (Grant No. 2011CBA00108), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Phillips P 2010Rev.Mod.Phys. 82 1719

    [2]

    Lee P A, Ramekrishnan T V 1985Rev.Mod.Phys. 57 287

    [3]

    Abrahams E 201050 Years of Anderson Localization(Singapore:World Scientific Publishing)

    [4]

    Lahoud E, Meetei O N, Chaska K B, Kanigel A, Trivedi N 2014Phys.Rev.Lett. 112 206402

    [5]

    Fazekas P, Tosatti E 1980Physica B 99 183

    [6]

    Sato H, Arita M, Utsumi Y, Mukaegawa Y, Sasaki M, Ohnishi A, Kitaura M, Namatame H, Taniguchi M 2014Phys.Rev.B 89 155137

    [7]

    Bayliss S C, Clark A, Liang W Y 1983J.Phys.C:Solid State Phys. 16 L831

    [8]

    Wilson J A, Di Salvo F J, Mahajan S 2001Adv.Phys. 50 1171

    [9]

    Wilson J A, Di Salvo F J, Mahajan S 1975Adv.Phys. 24 117

    [10]

    Fung K, Steeds J, Eades J 1980Physica B+C 99 47

    [11]

    Song Y, Wortis R, Atkinson W A 2008Phys.Rev.B 77 054202

    [12]

    Claessen R, Burandt B, Carstensen H, Skibowski M 1990Phys.Rev.B 41 8270

    [13]

    Rossnagel K, Smith N V 2006Phys.Rev.B 73 073106

    [14]

    Smith N V, Kevan S D, DiSalvo F J 1985J.Phys.C:Solid State Phys. 18 3175

    [15]

    Georges A, Kotliar G, Krauth W, Rozenberg M J 1996Rev.Mod.Phys. 68 13

    [16]

    Song Y, Atkinson W A, Wortis R 2007Phys.Rev.B 76 045105

    [17]

    Theodorou G, Cohen M H 1976Phys.Rev.B 13 4597

    [18]

    Eggarter T P, Riedinger R 1978Phys.Rev.B 18 569

    [19]

    Fleishman L, Licciardello D C 1977J.Phys.C:Solid State Phys. 10 L125

    [20]

    Soukoulis C M, Economou E N 1981Phys.Rev.B 24 5698

    [21]

    Thouless D J 1972J.Phys.C 5 77

    [22]

    Sun J, He L, Zhao Y Y, Song Y 2016Sci.China:Phys.Mech.Astron. 59 617401

    [23]

    He L, Song Y 2013Acta Phys.Sin. 62 057303(in Chinese)[何龙, 宋筠2013 62 057303]

    [24]

    Lazar P, Martincova J, Otyepka M 2015Phys.Rev.B 92 224104

  • [1]

    Phillips P 2010Rev.Mod.Phys. 82 1719

    [2]

    Lee P A, Ramekrishnan T V 1985Rev.Mod.Phys. 57 287

    [3]

    Abrahams E 201050 Years of Anderson Localization(Singapore:World Scientific Publishing)

    [4]

    Lahoud E, Meetei O N, Chaska K B, Kanigel A, Trivedi N 2014Phys.Rev.Lett. 112 206402

    [5]

    Fazekas P, Tosatti E 1980Physica B 99 183

    [6]

    Sato H, Arita M, Utsumi Y, Mukaegawa Y, Sasaki M, Ohnishi A, Kitaura M, Namatame H, Taniguchi M 2014Phys.Rev.B 89 155137

    [7]

    Bayliss S C, Clark A, Liang W Y 1983J.Phys.C:Solid State Phys. 16 L831

    [8]

    Wilson J A, Di Salvo F J, Mahajan S 2001Adv.Phys. 50 1171

    [9]

    Wilson J A, Di Salvo F J, Mahajan S 1975Adv.Phys. 24 117

    [10]

    Fung K, Steeds J, Eades J 1980Physica B+C 99 47

    [11]

    Song Y, Wortis R, Atkinson W A 2008Phys.Rev.B 77 054202

    [12]

    Claessen R, Burandt B, Carstensen H, Skibowski M 1990Phys.Rev.B 41 8270

    [13]

    Rossnagel K, Smith N V 2006Phys.Rev.B 73 073106

    [14]

    Smith N V, Kevan S D, DiSalvo F J 1985J.Phys.C:Solid State Phys. 18 3175

    [15]

    Georges A, Kotliar G, Krauth W, Rozenberg M J 1996Rev.Mod.Phys. 68 13

    [16]

    Song Y, Atkinson W A, Wortis R 2007Phys.Rev.B 76 045105

    [17]

    Theodorou G, Cohen M H 1976Phys.Rev.B 13 4597

    [18]

    Eggarter T P, Riedinger R 1978Phys.Rev.B 18 569

    [19]

    Fleishman L, Licciardello D C 1977J.Phys.C:Solid State Phys. 10 L125

    [20]

    Soukoulis C M, Economou E N 1981Phys.Rev.B 24 5698

    [21]

    Thouless D J 1972J.Phys.C 5 77

    [22]

    Sun J, He L, Zhao Y Y, Song Y 2016Sci.China:Phys.Mech.Astron. 59 617401

    [23]

    He L, Song Y 2013Acta Phys.Sin. 62 057303(in Chinese)[何龙, 宋筠2013 62 057303]

    [24]

    Lazar P, Martincova J, Otyepka M 2015Phys.Rev.B 92 224104

  • [1] 倪煜, 孙健, 全亚民, 罗东奇, 宋筠. 双轨道Hubbard模型的动力学平均场理论研究.  , 2022, 71(14): 147103. doi: 10.7498/aps.71.20220286
    [2] 孙孔浩, 易为. 非厄米局域拓扑指标的动力学特性.  , 2021, 70(23): 230309. doi: 10.7498/aps.70.20211576
    [3] 保安. 各向异性ruby晶格中费米子体系的Mott相变.  , 2021, 70(23): 230305. doi: 10.7498/aps.70.20210963
    [4] 武振伟, 汪卫华. 非晶态物质原子局域连接度与弛豫动力学.  , 2020, 69(6): 066101. doi: 10.7498/aps.69.20191870
    [5] 肖云鹏, 李松阳, 刘宴兵. 一种基于社交影响力和平均场理论的信息传播动力学模型.  , 2017, 66(3): 030501. doi: 10.7498/aps.66.030501
    [6] 沈壮志. 声驻波场中空化泡的动力学特性.  , 2015, 64(12): 124702. doi: 10.7498/aps.64.124702
    [7] 孙健, 刘洋, 宋筠. 洪德耦合的调控与轨道选择Mott相变.  , 2015, 64(24): 247101. doi: 10.7498/aps.64.247101
    [8] 杨志安. 非线性系统的非对角Berry相.  , 2013, 62(11): 110302. doi: 10.7498/aps.62.110302
    [9] 王陶, 李俊杰, 王锦程. 界面润湿性及固相体积分数对颗粒粗化动力学影响的相场法研究.  , 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [10] 陈谷然, 宋超, 徐骏, 王旦清, 徐岭, 马忠元, 李伟, 黄信凡, 陈坤基. 脉冲激光晶化超薄非晶硅膜的分子动力学研究.  , 2010, 59(8): 5681-5686. doi: 10.7498/aps.59.5681
    [11] 邓超生, 徐 慧, 刘小良, 伍晓赞. 无序度对一维长程关联无序系统中局域化-退局域化转变的影响.  , 2008, 57(4): 2415-2420. doi: 10.7498/aps.57.2415
    [12] 宋招权, 徐 慧, 李燕峰, 刘小良. 非对角无序和维数效应对低维无序系统电子结构的影响.  , 2005, 54(5): 2198-2201. doi: 10.7498/aps.54.2198
    [13] 唐刚, 马本堃. 非局域Lai-Das Sarma-Villain方程动力学标度性质的研究.  , 2001, 50(5): 851-855. doi: 10.7498/aps.50.851
    [14] 左都罗, 李道火. 金刚石晶格上的对角无序与非对角无序非晶量子点.  , 1994, 43(6): 991-999. doi: 10.7498/aps.43.991
    [15] 易林, 姚凯伦. 无序超导的动力学理论.  , 1993, 42(8): 1352-1355. doi: 10.7498/aps.42.1352
    [16] 许望, 李正中. 双导带Anderson晶格的Slave-Boson平均场理论.  , 1988, 37(4): 598-607. doi: 10.7498/aps.37.598
    [17] 厉彦民, 章立源. 对角无序对局域电子配对系统的上临界磁场的影响.  , 1988, 37(6): 1030-1035. doi: 10.7498/aps.37.1030
    [18] 庞根弟, 蔡建华. 非均匀无序系统的声子局域化.  , 1988, 37(4): 688-690. doi: 10.7498/aps.37.688
    [19] 魏国柱. 对称Anderson晶格基态的局域方法近似.  , 1987, 36(11): 1433-1440. doi: 10.7498/aps.36.1433
    [20] 熊诗杰, 蔡建华. 非均匀无序系统中Anderson局域化的标度理论——实空间重整化群途径.  , 1985, 34(12): 1530-1538. doi: 10.7498/aps.34.1530
计量
  • 文章访问数:  5929
  • PDF下载量:  253
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-24
  • 修回日期:  2016-11-21
  • 刊出日期:  2017-03-05

/

返回文章
返回
Baidu
map