搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

洪德耦合的调控与轨道选择Mott相变

孙健 刘洋 宋筠

引用本文:
Citation:

洪德耦合的调控与轨道选择Mott相变

孙健, 刘洋, 宋筠

Manipulation of Hund's rule coupling and orbital-selective Mott transition

Sun Jian, Liu Yang, Song Yun
PDF
导出引用
  • 洪德耦合相互作用是导致多轨道体系发生轨道选择Mott相变的重要因素之一. 通过调控洪德耦合相互作用来研究其不同组成部分对轨道选择Mott相变的作用. 利用基于Lanczos 求解器的动力学平均场理论, 对比了双轨道的J模型和Jz模型的金属-绝缘体相变, 并重点讨论洪德耦合中的自旋翻转项和电子对跃迁项以及轨道宽度比值W2/W1如何影响轨道选择Mott 相变. 在J模型的相图中, Mott选择相占有较大的区域, 而Jz模型的轨道选择Mott 相只存在于一个很狭窄的区域内, 这说明自旋翻转项及电子对跳跃项是有利于轨道选择Mott相变发生的关键因素. 此外当轨道宽度之比大于W2/W1=0.7时, Jz 模型的轨道选择Mott 相会完全消失, 而J模型中只要轨道宽度不同都存在轨道选择Mott相. 因而, 简化后的Jz 模型只是在特定条件下才适合于研究轨道选择Mott相变.
    Using the dynamical mean field theory with Lanczos method as its impurity solver, we study the orbital-selective Mott transition (OSMT) in the two-orbital J model and Jz model. In the multi-orbital systems, the Mott metal-insulator transition occurs successively when the widths of the bands are different. As the narrow orbital becomes Mott insulator while the wide orbital is still in metallic phase, we find an orbital-selective Mott phase (OSMP). There are two different Hubbard models that are frequently used to describe the OSMT, which are named J model and Jz model, respectively. The J Model is composed of the whole Hund's rule coupling terms, including the spin-flip term, the pair-hopping term and the Ising type Hund's rule coupling term. However, there is only Ising type Hund's rule coupling term in the Jz model.#br#We study the ratio of bandwidth W2/W1 on the OSMT by analyzing the results of the density of states and quasi-particle weight. Comparing the phase diagrams obtained from the J and Jz models with the Hund's rule coupling J(Jz)=U/4, we find that the OSMP region of the J model is much larger than that of the Jz model when W2/W1=0.5 or W2/W1=0.2. When the ratio of bandwidth increases to W2/W1=0.8, the OSMP disappears completely in the Jz model. However in the J model, we can still find the OSMT but the area of the OSMP shrinks significantly. Therefore, the OSMT happens more easily in the J model than in the Jz model.#br#In order to discuss the cooperative effect of the bandwidth and Hund's rule coupling on the OSMT, we compare the phase diagrams for different Hund's rule couplings J(Jz)=U/4 and J(Jz)=U/2. We find that when the bandwidth W2/W1≥q 0.7, the OSMT disappears in Jz model in the case of either Jz=U/4 or Jz=U/2. However, the OSMP always exists in the J model if the bandwidths of the two orbitals are different, suggesting that the rotation invariances of the Hund's rule couplings can protect the OSMP. Therefore, one should be more careful when using the Jz model instead of the J model to study the OSMP.
      通信作者: 宋筠, yunsong@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11174036, 11474023)、国家重点基础研究发展计划(批准号: 2011CBA00108)和中央高校基本科研业务费资助的课题.
      Corresponding author: Song Yun, yunsong@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174036, 11474023), the National Basic Research Program of China (Grant No. 2011CBA00108), and the Fundamental Research Funds for the Central Universities, China.
    [1]

    Salamon M B, Jaime M 2001 Rev. Mod. Phys. 73 583

    [2]

    Hirschfeld P J, Korshunov M M, Mazin I I 2011 Rep. Prog. Phys. 74 124508

    [3]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [4]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [5]

    Zou L J 2014 Physics 43 299 (in Chinese) [邹良剑 2014 物理 43 299]

    [6]

    Anisimov V I, Nekrasov I A, Kondakov D E, Rice T M, Sigrist M 2002 Eur. Phys. J. B 25 191

    [7]

    Mott N F 1968 Rev. Mod. Phys. 40 677

    [8]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [9]

    Inaba K, Koga A 2006 Phys. Rev. B 73 155106

    [10]

    Song Y, Zou L J 2005 Phys. Rev. B 72 085114

    [11]

    Bouadim K, Batrouni G G, Scalettar R T 2009 Phys. Rev. Lett. 102 226402

    [12]

    Zhang Y Z 2014 Physics 43 309 (in Chinese) [张宇钟 2014 物理 43 309]

    [13]

    Quan Y M, Liu D Y, Zou L J 2012 Acta Phys. Sin. 61 017106 (in Chinese) [全亚民, 刘大勇, 邹良剑 2012 61 017106]

    [14]

    Koga A, Kawakami N, Rice T M, Sigrist M 2005 Phys. Rev. B 72 045128

    [15]

    Liebsch A 2005 Phys. Rev. Lett. 95 116402

    [16]

    Jakobi E, Blmer N, van Dongen P 2013 Phys. Rev. B 87 205135

    [17]

    Song Z Y, Lee H, Zhang Y Z 2015 New J. Phys. 17 033034

    [18]

    Blmer N, Knecht C, Pozgajcić K, van Dongen P 2007 J. Magn. Mater 310 922

    [19]

    Koga A, Kawakami N, Rice T M, Sigrist M 2005 Physica B 359 1366

    [20]

    Koga A, Kawakami N, Rice T M, Sigrist M 2004 Phys. Rev. Lett. 92 216402

    [21]

    Werner P, Millis A J 2007 Phys. Rev. Lett. 99 126405

    [22]

    Song Y, Zou L J 2009 Eur. Phys. J. B 72 59

    [23]

    Pruschke Th, Bulla R 2005 Eur. Phys. J. B 44 217

    [24]

    de'Medici L, Georges A, Biermann S 2005 Phys. Rev. B 72 205124

    [25]

    Ferrero M, Becca F, Fabrizio M, Capone M 2005 Phys. Rev. B 72 205126

    [26]

    de'Medici L 2011 Phys. Rev. B 83 205112

    [27]

    de'Medici L, Hassan S R, Capone M, Dai X 2011 Phys. Rev. Lett. 102 126401

    [28]

    Zhuang J N, Liu Q M, Fang Z, Dai X 2010 Chin. Phys. B 19 087104

    [29]

    Zhao J Zh, Zhuang J N, Deng X Y, Bi Y, Cai L C, Fang Z, Dai X 2012 Chin. Phys. B 21 057106

    [30]

    Caffarel M, Krauth W 1994 Phys. Rev. Lett. 72 1545

    [31]

    Georges A, Kotliar G, Krauth W, Rozenberg M J 1996 Rev. Mod. Phys. 68 13

    [32]

    Dagotto E 1994 Rev. Mod. Phys. 66 763

  • [1]

    Salamon M B, Jaime M 2001 Rev. Mod. Phys. 73 583

    [2]

    Hirschfeld P J, Korshunov M M, Mazin I I 2011 Rep. Prog. Phys. 74 124508

    [3]

    Stewart G R 2011 Rev. Mod. Phys. 83 1589

    [4]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [5]

    Zou L J 2014 Physics 43 299 (in Chinese) [邹良剑 2014 物理 43 299]

    [6]

    Anisimov V I, Nekrasov I A, Kondakov D E, Rice T M, Sigrist M 2002 Eur. Phys. J. B 25 191

    [7]

    Mott N F 1968 Rev. Mod. Phys. 40 677

    [8]

    Imada M, Fujimori A, Tokura Y 1998 Rev. Mod. Phys. 70 1039

    [9]

    Inaba K, Koga A 2006 Phys. Rev. B 73 155106

    [10]

    Song Y, Zou L J 2005 Phys. Rev. B 72 085114

    [11]

    Bouadim K, Batrouni G G, Scalettar R T 2009 Phys. Rev. Lett. 102 226402

    [12]

    Zhang Y Z 2014 Physics 43 309 (in Chinese) [张宇钟 2014 物理 43 309]

    [13]

    Quan Y M, Liu D Y, Zou L J 2012 Acta Phys. Sin. 61 017106 (in Chinese) [全亚民, 刘大勇, 邹良剑 2012 61 017106]

    [14]

    Koga A, Kawakami N, Rice T M, Sigrist M 2005 Phys. Rev. B 72 045128

    [15]

    Liebsch A 2005 Phys. Rev. Lett. 95 116402

    [16]

    Jakobi E, Blmer N, van Dongen P 2013 Phys. Rev. B 87 205135

    [17]

    Song Z Y, Lee H, Zhang Y Z 2015 New J. Phys. 17 033034

    [18]

    Blmer N, Knecht C, Pozgajcić K, van Dongen P 2007 J. Magn. Mater 310 922

    [19]

    Koga A, Kawakami N, Rice T M, Sigrist M 2005 Physica B 359 1366

    [20]

    Koga A, Kawakami N, Rice T M, Sigrist M 2004 Phys. Rev. Lett. 92 216402

    [21]

    Werner P, Millis A J 2007 Phys. Rev. Lett. 99 126405

    [22]

    Song Y, Zou L J 2009 Eur. Phys. J. B 72 59

    [23]

    Pruschke Th, Bulla R 2005 Eur. Phys. J. B 44 217

    [24]

    de'Medici L, Georges A, Biermann S 2005 Phys. Rev. B 72 205124

    [25]

    Ferrero M, Becca F, Fabrizio M, Capone M 2005 Phys. Rev. B 72 205126

    [26]

    de'Medici L 2011 Phys. Rev. B 83 205112

    [27]

    de'Medici L, Hassan S R, Capone M, Dai X 2011 Phys. Rev. Lett. 102 126401

    [28]

    Zhuang J N, Liu Q M, Fang Z, Dai X 2010 Chin. Phys. B 19 087104

    [29]

    Zhao J Zh, Zhuang J N, Deng X Y, Bi Y, Cai L C, Fang Z, Dai X 2012 Chin. Phys. B 21 057106

    [30]

    Caffarel M, Krauth W 1994 Phys. Rev. Lett. 72 1545

    [31]

    Georges A, Kotliar G, Krauth W, Rozenberg M J 1996 Rev. Mod. Phys. 68 13

    [32]

    Dagotto E 1994 Rev. Mod. Phys. 66 763

  • [1] 贺苏娟, 邹为. 平均场反馈下全局耦合Stuart-Landau极限环系统的可解集体动力学.  , 2023, 72(20): 200502. doi: 10.7498/aps.72.20230842
    [2] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学.  , 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [3] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学.  , 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [4] 倪煜, 孙健, 全亚民, 罗东奇, 宋筠. 双轨道Hubbard模型的动力学平均场理论研究.  , 2022, 71(14): 147103. doi: 10.7498/aps.71.20220286
    [5] 保安. 各向异性ruby晶格中费米子体系的Mott相变.  , 2021, 70(23): 230305. doi: 10.7498/aps.70.20210963
    [6] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响.  , 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [7] 刘帅, 黄易之, 郭海山, 张永鹏, 杨兰均. 平行轨道加速器等离子体动力学特性研究.  , 2018, 67(6): 065201. doi: 10.7498/aps.67.20172403
    [8] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变.  , 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [9] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度.  , 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [10] 肖云鹏, 李松阳, 刘宴兵. 一种基于社交影响力和平均场理论的信息传播动力学模型.  , 2017, 66(3): 030501. doi: 10.7498/aps.66.030501
    [11] 赵洋洋, 宋筠. 无序效应对1T-TaS2材料中Mott绝缘相的影响.  , 2017, 66(5): 057101. doi: 10.7498/aps.66.057101
    [12] 贺丽, 余增强. 自旋-轨道耦合作用下双组分量子气体中的动力学结构因子与求和规则.  , 2016, 65(13): 131101. doi: 10.7498/aps.65.131101
    [13] 俞榕. 铁基超导体多轨道模型中的电子关联与轨道选择.  , 2015, 64(21): 217102. doi: 10.7498/aps.64.217102
    [14] 马文聪, 金宁德, 高忠科. 动力学变换法探测连续系统不稳定周期轨道.  , 2012, 61(17): 170510. doi: 10.7498/aps.61.170510
    [15] 全亚民, 刘大勇, 邹良剑. 多轨道Hubbard模型的隶玻色子数值算法研究.  , 2012, 61(1): 017106. doi: 10.7498/aps.61.017106
    [16] 高原, 柳占立, 赵雪川, 张朝晖, 庄茁, 由小川. 基于点缺陷扩散理论与离散位错动力学耦合的位错攀移模型研究.  , 2011, 60(9): 096103. doi: 10.7498/aps.60.096103
    [17] 高嵩, 徐学友, 周慧, 张延惠, 林圣路. 电场中里德伯原子动力学性质的半经典理论研究.  , 2009, 58(3): 1473-1479. doi: 10.7498/aps.58.1473
    [18] 陈菊华, 王永久. 极端荷电黑洞引力场中的轨道动力学.  , 2001, 50(10): 1833-1836. doi: 10.7498/aps.50.1833
    [19] 杜懋陆, 李兆民, 谌家军. d~3络合物零场分裂的双自旋-轨道耦合参数模型.  , 1995, 44(10): 1607-1614. doi: 10.7498/aps.44.1607
    [20] 方励之, 区智. 强耦合的动力学Jahn-Teller效应理论.  , 1966, 22(4): 471-486. doi: 10.7498/aps.22.471
计量
  • 文章访问数:  6838
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-19
  • 修回日期:  2015-09-18
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map