搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

石墨表面熔融硅的润湿行为研究

程广贵 张忠强 丁建宁 袁宁一 许多

引用本文:
Citation:

石墨表面熔融硅的润湿行为研究

程广贵, 张忠强, 丁建宁, 袁宁一, 许多

Wetting behaviors of the molten silicon on graphite surface

Cheng Guang-Gui, Zhang Zhong-Qiang, Ding Jian-Ning, Yuan Ning-Yi, Xu Duo
PDF
导出引用
  • 熔融硅在石墨表面的润湿规律对于超薄硅片的横向拉模制造尤为重要.本文利用COMSOL软件模拟了理想条件下熔融硅在光滑石墨表面的润湿过程,并借助高温高真空接触角测量仪对高温条件下石墨表面熔融硅的润湿性能开展了实验研究.考察了石墨表面粗糙度(Ra=0.721 m与Ra=0.134 m)、环境温度(17371744 K)、恒温持续时间(1030 s)等因素对润湿角的影响.结合固-液、气-液界面的压力、速度分布图,分析了恒定温度、毛细效应下表面张力变化对润湿过程的影响机制.研究结果表明,相同温度下,石墨表面硅液滴的润湿角随石墨表面粗糙度增大而减小.对同一粗糙度表面,润湿角在相同温度下随保温时间的增加略微减小,且变化的幅度随温度升高而减小.当液滴半径远小于5 mm时,表面张力在润湿过程中起主导作用;当液滴半径大于5 mm时,液滴自身重力的影响不可忽略.
    A theory which was proposed by Scheid et al. in 2010 (Scheid B, van Nierop E A, Stone H A 2010 Appl. Phys. Lett. 97 171906) suggests that very thin ribbons of molten material can be drawn out of a melt by adequately tuning the temperature gradient along the dynamic meniscus that connects the static meniscus at the melting bath to the region of the drawn flat film. Based on this theory, one-step manufacturing ultra-thin silicon wafer by pulling out from a molten silicon bath has attracted considerable attention in recent year due to its many attractive performances such as low cost, simple process, etc. By using this method, solar cell can have intensive applications due to its low cost and stable output efficiency. The results show that the thermal capillarity effect plays a great role in preparing the ultra-thin silicon. The thickness of the silicon wafer is sensitive to the capillary length and the strength of the surface tension variation as well. In order to reveal the mechanism for the effect of thermal capillary on the fabrication of ultra-thin silicon wafer, a thermal capillary finite element model is developed for the horizontal ribbon growth system to study the wetting behaviors of molten silicon on graphite. The mathematical model is established and simulated by using the commercial software; several parameters such as mass, viscous stress and capillary force are calculated. The wetting processes are tested by changing surface roughness (Ra=0.721 m and Ra=0.134 m), system temperatures (17371744 K), and durations (1030 s) at constant temperature on a high-temperature, high-vacuum contact angle measurement instrument. It is found that the wetting angle of silicon droplet on graphite decreases with surface roughness and temperature increasing; the wetting angle comes down with time going by (lasting 30 s) at constant temperature, which is consistent with the theoretical result of Wenzel. The influence of surface tension on wetting process is studied by analyzing the distributions of pressure and velocity field. It is shown that the differential pressure at the solid-liquid interfaces, induced by thermal capillary effect, decreases in the wetting process and reaches a balance which prevents the droplet from being wetted. At T=1700 K, the wetting angle and the shape of droplet change quickly within 0.4 ms and eventually become stable after 5 ms as shown in the simulation. The spreading length L and droplet height h at the steady-state are calculated with considering the influence of droplet radius on the wetting process. The results show that both L and h are directly related to the steady-state of wetting angle. The surface tension dominates the wetting process for droplet radius R0 5mm; while for R0 5 mm, the wetting process is dominated by gravity.
      通信作者: 程广贵, ggcheng@ujs.edu.cn;dingjn@ujs.edu.cn ; 丁建宁, ggcheng@ujs.edu.cn;dingjn@ujs.edu.cn
    • 基金项目: 国家自然科学基金重点项目(批准号:51335002)、江苏省战略性新兴产业重点支持项目(批准号:苏建财2015-318)和江苏高校优势学科建设工程资助的课题.
      Corresponding author: Cheng Guang-Gui, ggcheng@ujs.edu.cn;dingjn@ujs.edu.cn ; Ding Jian-Ning, ggcheng@ujs.edu.cn;dingjn@ujs.edu.cn
    • Funds: Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 51335002), the Key Support Projects of Strategic Emerging Industries in Jiangsu Province, China (Grant No. 2015-318), and the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
    [1]

    Wang A, Zhao J, Wenham S R, Green M A 1996 Prog. Photovolt. Res. Appl. 4 55

    [2]

    Green M A 2009 Prog. Photovolt. Res. Appl. 17 183

    [3]

    Zhang Y N, Stokes N, Jia B H, Fan S H, Gu M 2014 Sci. Rep. 4 4939

    [4]

    Ren Z P, Zhang N L, Luo R 1987 J. Eng.Thermophys. 8 70 (in Chinese)[任泽霈, 张能力, 罗锐1987工程热物理8 70]

    [5]

    Karapetsas G, Sahu K C, Sefiane K, Matar O K 2014 Langmuir 30 4310

    [6]

    Liu C S 2008 J. Qingdao Technol. Univ. 29 9 (in Chinese)[刘长松2008青岛理工大学学报29 9]

    [7]

    Wang F, Peng L, Zhang Q Z, Liu J 2015 Acta Phys. Sin. 64 140202 (in Chinese)[王飞, 彭岚, 张全壮, 刘佳2015 64 140202]

    [8]

    Daggolu P, Yeckel A, Bleil C E, Derby J J 2012 J.Cryst. Growth 355 129

    [9]

    Scheid B, van Nierop E A, Stone H A 2010 Appl. Phys. Lett. 97 171906

    [10]

    Scheid B, van Nierop E A, Stone H A 2012 Phys. Fluids 24 032107

    [11]

    Liu Z H, Jin W Q, Pan Z L, Cheng N 1998 J.Inorg. Mater. 13 113 (in Chinese)[刘照华, 金蔚青, 潘志雷, 程宁1998无机材料学报13 113]

    [12]

    Chen S X, Li M W 2007 J. Inorg. Mater. 22 15 (in Chinese)[陈淑仙, 李明伟2007无机材料学报22 15]

    [13]

    Yu Q H, Liu L J, Geng A N, Jiang B W, Li Z Y, Xu Y Y, Xue K M 2014 J. Cryst. Growth 385 49

    [14]

    Ranjan S, Balaji S, Panella R A, Ydstie B E 2011 Comput. Chem. Eng. 35 1439

    [15]

    Shockley W 1962 US Patent 3031275

    [16]

    Jeong H M, Chung H S, Lee T W 2010 J. Cryst. Growth 312 555

    [17]

    Hess U, Pichon P Y, Seren S, Schöneckerb A, Hahna G 2013 Sol. Energ. Mat. Sol. C 117 471

    [18]

    Xu D, Ding J N, Yuan N Y, Zhang Z Q, Cheng G G, Guo L Q, Ling Z Y 2015 Acta Phys. Sin. 64 116801 (in Chinese)[许多, 丁建宁, 袁宁一, 张忠强, 程广贵, 郭立强, 凌智勇2015 64 116801]

    [19]

    Legendre D, Magnaudet J, Mougin G 2003 J. Fluid Mech. 497 133

    [20]

    Merle A, Legendre D, Magnaudet J 2005 J. Fluid Mech. 532 53

    [21]

    Bretherton F P 1961 J. Fluid Mech. 10 166

  • [1]

    Wang A, Zhao J, Wenham S R, Green M A 1996 Prog. Photovolt. Res. Appl. 4 55

    [2]

    Green M A 2009 Prog. Photovolt. Res. Appl. 17 183

    [3]

    Zhang Y N, Stokes N, Jia B H, Fan S H, Gu M 2014 Sci. Rep. 4 4939

    [4]

    Ren Z P, Zhang N L, Luo R 1987 J. Eng.Thermophys. 8 70 (in Chinese)[任泽霈, 张能力, 罗锐1987工程热物理8 70]

    [5]

    Karapetsas G, Sahu K C, Sefiane K, Matar O K 2014 Langmuir 30 4310

    [6]

    Liu C S 2008 J. Qingdao Technol. Univ. 29 9 (in Chinese)[刘长松2008青岛理工大学学报29 9]

    [7]

    Wang F, Peng L, Zhang Q Z, Liu J 2015 Acta Phys. Sin. 64 140202 (in Chinese)[王飞, 彭岚, 张全壮, 刘佳2015 64 140202]

    [8]

    Daggolu P, Yeckel A, Bleil C E, Derby J J 2012 J.Cryst. Growth 355 129

    [9]

    Scheid B, van Nierop E A, Stone H A 2010 Appl. Phys. Lett. 97 171906

    [10]

    Scheid B, van Nierop E A, Stone H A 2012 Phys. Fluids 24 032107

    [11]

    Liu Z H, Jin W Q, Pan Z L, Cheng N 1998 J.Inorg. Mater. 13 113 (in Chinese)[刘照华, 金蔚青, 潘志雷, 程宁1998无机材料学报13 113]

    [12]

    Chen S X, Li M W 2007 J. Inorg. Mater. 22 15 (in Chinese)[陈淑仙, 李明伟2007无机材料学报22 15]

    [13]

    Yu Q H, Liu L J, Geng A N, Jiang B W, Li Z Y, Xu Y Y, Xue K M 2014 J. Cryst. Growth 385 49

    [14]

    Ranjan S, Balaji S, Panella R A, Ydstie B E 2011 Comput. Chem. Eng. 35 1439

    [15]

    Shockley W 1962 US Patent 3031275

    [16]

    Jeong H M, Chung H S, Lee T W 2010 J. Cryst. Growth 312 555

    [17]

    Hess U, Pichon P Y, Seren S, Schöneckerb A, Hahna G 2013 Sol. Energ. Mat. Sol. C 117 471

    [18]

    Xu D, Ding J N, Yuan N Y, Zhang Z Q, Cheng G G, Guo L Q, Ling Z Y 2015 Acta Phys. Sin. 64 116801 (in Chinese)[许多, 丁建宁, 袁宁一, 张忠强, 程广贵, 郭立强, 凌智勇2015 64 116801]

    [19]

    Legendre D, Magnaudet J, Mougin G 2003 J. Fluid Mech. 497 133

    [20]

    Merle A, Legendre D, Magnaudet J 2005 J. Fluid Mech. 532 53

    [21]

    Bretherton F P 1961 J. Fluid Mech. 10 166

  • [1] 于天林, 凡凤仙. 竖直振动激励下颗粒毛细上升行为研究.  , 2022, 71(10): 104501. doi: 10.7498/aps.71.20212333
    [2] 罗进宝, VasiliyPelenovich, 曾晓梅, 郝中华, 张翔宇, 左文彬, 付德君. 离子剂量比在气体团簇多级能量平坦化模式中的作用.  , 2021, 70(22): 223601. doi: 10.7498/aps.70.20202011
    [3] VasiliyPelenovich, 曾晓梅, 罗进宝, RakhimRakhimov, 左文彬, 张翔宇, 田灿鑫, 邹长伟, 付德君, 杨兵. 气体团簇离子束两步能量修形法的平坦化效应.  , 2021, 70(5): 053601. doi: 10.7498/aps.70.20201454
    [4] 张冉, 常青, 李桦. 气体-表面相互作用的分子动力学模拟研究.  , 2018, 67(22): 223401. doi: 10.7498/aps.67.20181608
    [5] 王建国, 杨松林, 叶永红. 样品表面银膜的粗糙度对钛酸钡微球成像性能的影响.  , 2018, 67(21): 214209. doi: 10.7498/aps.67.20180823
    [6] 宋延松, 杨建峰, 李福, 马小龙, 王红. 基于杂散光抑制要求的光学表面粗糙度控制方法研究.  , 2017, 66(19): 194201. doi: 10.7498/aps.66.194201
    [7] 宋永锋, 李雄兵, 史亦韦, 倪培君. 表面粗糙度对固体内部超声背散射的影响.  , 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [8] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究.  , 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [9] 陈苏婷, 胡海锋, 张闯. 基于激光散斑成像的零件表面粗糙度建模.  , 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [10] 许多, 丁建宁, 袁宁一, 张忠强, 程广贵, 郭立强, 凌智勇. 壁面材质和温度场对熔融硅润湿角的影响.  , 2015, 64(11): 116801. doi: 10.7498/aps.64.116801
    [11] 杨青, 杜广庆, 陈烽, 吴艳敏, 欧燕, 陆宇, 侯洵. 时间整形飞秒激光诱导熔融硅表面纳米周期条纹的电子动力学研究.  , 2014, 63(4): 047901. doi: 10.7498/aps.63.047901
    [12] 马靖杰, 夏辉, 唐刚. 含关联噪声的空间分数阶随机生长方程的动力学标度行为研究.  , 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [13] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用.  , 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [14] 曹洪, 黄勇, 陈素芬, 张占文, 韦建军. 脉冲敲击技术对PI微球表面粗糙度的影响.  , 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
    [15] 黄晓玉, 程新路, 徐嘉靖, 吴卫东. Be原子在Be基底上的沉积过程研究.  , 2012, 61(9): 096801. doi: 10.7498/aps.61.096801
    [16] 马海敏, 洪亮, 尹伊, 许坚, 叶辉. 超亲水性SiO2-TiO2纳米颗粒阵列结构的制备与性能研究.  , 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [17] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响.  , 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [18] 谷锦华, 丁艳丽, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 椭圆偏振技术研究VHF-PECVD高速沉积微晶硅薄膜的异常标度行为.  , 2009, 58(6): 4123-4127. doi: 10.7498/aps.58.4123
    [19] 周炳卿, 刘丰珍, 朱美芳, 周玉琴, 吴忠华, 陈 兴. 微晶硅薄膜的表面粗糙度及其生长机制的X射线掠角反射研究.  , 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [20] 侯海虹, 孙喜莲, 申雁鸣, 邵建达, 范正修, 易 葵. 电子束蒸发氧化锆薄膜的粗糙度和光散射特性.  , 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
计量
  • 文章访问数:  7236
  • PDF下载量:  303
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-06-28
  • 修回日期:  2016-11-08
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map