搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过渡金属硼化物的结构与性质

陶强 马帅领 崔田 朱品文

引用本文:
Citation:

过渡金属硼化物的结构与性质

陶强, 马帅领, 崔田, 朱品文

Structures and properties of functional transition metal borides

Tao Qiang, Ma Shuai-Ling, Cui Tian, Zhu Pin-Wen
PDF
导出引用
  • 过渡金属硼化物(TMBs)是一类具有强耐磨性、抗腐蚀性、耐高温、高硬度的多功能材料.过渡金属与硼原子间电荷转移量的多样性决定了过渡金属硼化物中化学键的成键方式和成键强弱,最终导致过渡金属硼化物丰富的结构以及潜在的多功能特性.过渡金属硼化物的制备、晶体结构和力学性能一直是该领域的研究热点.硼原子间的强共价键决定了过渡金属硼化物的合成需要高能量;晶体结构中化学键的强弱与过渡金属硼化物的硬度性质息息相关;多种化学键成键方式使过渡金属硼化物展现出了丰富的多功能性质.本文主要从过渡金属硼化物的合成、结构、硬度性质和多功能性质四个方面,以不同硼原子亚结构单元为出发点,总结和分析了过渡金属硼化物的研究现状.我们认为,利用高温高压制备TMBs,诱导过渡金属与硼原子之间的电子转移,构造(准)三维的化学键,是设计制备新型多功能硬质过渡金属硼化物的有效方法.
    Transition metal borides (TMBs) are hard or potential superhard materials due to abrasion resistant, corrosion preventive, oxidation resistance and high hardness. However, few TMBs are superhard materials, so, discussing the strength of TMBs to understand hardness mechanism is necessary. Moreover, there are superconductors, magnetic materials, and catalysts in TMBs. But uncovering more functions in TMBs is important for finding a new kind of functional hard or superhard material. While, high energy is necessary to synthesize TMBs due to strong BB covalent bonds and high melting of transition metal. Thus high temperature or extreme condition is necessary for synthesizing single crystal or bulk sample with high density, which is important for testing physical properties. Various ways of hybridizing boron atoms and high content of valence electron of transition metal are used to induce a large number of structures and potential new properties in TMBs. Boron atoms can form different substructures with different content of boron in TMBs, such as one-dimensional, two-dimensional and three-dimensional (3D) structures. These different boron atom substructures can affect the stability of structure and physical properties, especially hardness, because of the strong covalent bonds between boron atoms. Thus the structure and hardness of TMBs have always received much attention. The multiple electron transfer between transition metal and boron induces diverse chemical bonds in TMBs. All of covalent bonds, ionic bonds, and metal bonds in TMBs determine the mechanic performances, electricitic and magnetic properties, and chemical activity of TMBs. In this work, synthesis method, stability of structure, hardness, and functional properties of TMBs are discussed. The using of high pressure and high temperature is an effective method to prepare TMBs, because under high pressure and high temperature the electrons can transfer between transition-metal atoms and boron atoms in TMBs. There are not only stable TMBs which are even under very high pressure, but also many metastable structures in TMBs. Hardness values of TMBs are discussed by different content of boron, the high boron content or even 3D boron structure is not superhard material. Because insufficient electron transfer can form the distorted BB covalent bond which is weaker than directional covalent bonds like CC in diamond. Thus electron transfer is significant in TMBs for designing hard or even superhard materials. Besides high hardness, there are superconductor, magnetic material, and catalyzers in TMBs, but there are many potential properties of TMBs which are unknown. Further study to uncover the new properties of TMBs is significant for finding a new kind of functional hard material.
      通信作者: 朱品文, zhupw@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:51032001,51172091,41572357)资助的课题.
      Corresponding author: Zhu Pin-Wen, zhupw@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51032001, 51172091, 41572357).
    [1]

    Solozhenko V L, Andrault D, Fiquet G, Mezouar M, Rubie D C 2001 Appl. Phys. Lett. 78 1385

    [2]

    Haines J, Léger J M, Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1

    [3]

    Occelli F, Loubeyre P, Letoullec R 2003 Nat. Mater. 2 151

    [4]

    Boyen H G, Deyneka N, Ziemann P, Banhart F 2002 Diamond Relat. Mater. 11 38

    [5]

    Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [6]

    Aleksandrov I V, Goncharov A P, Makarenko I N, Zisman A N, Jakovenko E V, Stishov S M 1989 High Pressure Res. 1 333

    [7]

    Kaner R B, Gilman J J, Tolbert S H 2005 Science 308 1268

    [8]

    Zhou D, Wang J S, Cui Q L, Li Q 2014 J. Appl. Phys. 115 113504

    [9]

    Çamurlu Erdem Hasan 2011 J. Alloys Compd. 509 5431

    [10]

    Jiang C L, Pei Z L, Liu Y M, Xiao J Q, Gong J, Sun C 2013 Phys. Status Solidi A 210 1221

    [11]

    Zang C P, Sun H, Tse J S, Chen C F 2012 Phys. Rev. B 86 014108

    [12]

    Fokwa B P T 2010 Eur. J. Inorg. Chem. 2010 3075

    [13]

    Escamilla R, Huerta L 2006 Supercond. Sci. Technol. 19 623

    [14]

    Gu Q F, Krauss G, Steurer W 2008 Adv. Mater. 20 3620

    [15]

    Yin S, He D W, Xu C, Wang W D, Wang H K, Li L, Zhang L L, Liu F M, Liu P P, Wang Z G, Meng C M, Zhu W J 2013 High Pressure Res. 33 409

    [16]

    Gu Y L, Qian Y T, Chen L Y, Zhou F 2003 J. Alloys Compd. 352 325

    [17]

    Gou H Y, Dubrovinskaia N, Bykova E, Tsirlin A A, Kasinathan D, Schnelle W, Richter A, Merlini M, Hanfland M, Abakumov A M, Batuk D, Tendeloo G V, Nakajima Y, Kolmogorov A N, Dubrovinsky L 2013 Phys. Rev. Lett. 111 157002

    [18]

    Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K, Veprek S 2012 Phys. Rev. Lett. 108 255502

    [19]

    Lech A T, Turner C L, Mohammadi R, Tolbert S H, Kaner R B 2015 Proc. Natl. Acad. Sci. USA 112 3223

    [20]

    Cheng X Y, Zhang W, Chen X Q, Niu H Y, Liu P T, Du K, Liu G, Li D Z, Cheng H M, Ye H Q, Li Y Y 2013 Appl. Phys. Lett. 103 171903

    [21]

    Zeiringer I, Rogl P, Grytsiv A, Polt J, Bauer E, Giester G 2014 J. Phase Equilib. Diff. 35 384

    [22]

    Tao Q, Zhao X P, Chen Y L, Li J, Li Q, Ma Y M, Li J J, Cui T, Zhu P W, Wang X 2013 RSC Adv. 3 18317

    [23]

    Zhang M G, Wang H, Wang H B, Cui T, Ma Y M 2010 J. Phys. Chem. C 114 6722

    [24]

    Wang B, Li X, Wang Y X, Tu Y F 2011 J. Phys. Chem. C 115 21429

    [25]

    Gou H Y, Steinle-Neumann G, Bykova E, Nakajima Y, Miyajima N, Li Y, Ovsyannikov S V, Dubrovinsky L S, Dubrovinskaia N 2013 Appl. Phys. Lett. 102 061906

    [26]

    Fan J, Bao K, Jin X L, Meng X X, Duan D F, Liu B B, Cui T 2012 J. Mater. Chem. 22 17630

    [27]

    Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H, Kaner R B 2007 Science 316 436

    [28]

    Mohammadi R, Lech A T, Xie M, Weaver B E, Yeung M T, Tolbert S H, Kaner R B 2011 Proc. Natl. Acad. Sci. USA 108 10958

    [29]

    Niu H Y, Wang J Q, Chen X Q, Li D Z, Li Y Y, Lazar P, Podloucky R, Kolmogorov A N 2012 Phys. Rev. B 85 144116

    [30]

    Knappschneider A, Litterscheid C, Dzivenko D, Kurzman J A, Seshadri R, Wagner N, Beck J, Riedel R, Albert B 2013 Inorg. Chem. 52 540

    [31]

    Li B, Sun H, Chen C F 2014 Phys. Rev. B 90 014106

    [32]

    Yeh C L, Hsu W S 2008 J. Alloys Compd. 457 191

    [33]

    Xie M, Mohammadi R, Mao Z, Armentrout M M, Kavner A, Kaner R B, Tolbert S H 2012 Phys. Rev. B 85 064118

    [34]

    Mohammadi R, Xie M, Lech A T, Turner C L, Kavner A, Tolbert S H, Kaner R B 2012 J. Am. Chem. Soc. 134 20660

    [35]

    Zhu H, Ni C Y, Zhang F M, Du Y W, Xiao J Q 2005 J. Appl. Phys. 97 10M512

    [36]

    Simonson J W, Wu D, Poon S J, Wolf S A 2010 J. Supercond. Novel Magn. 23 417

    [37]

    Zheng Q, Kohout M, Gumeniuk R, Abramchuk N, Borrmann H, Prots Y, Burkhardt U, Schnelle W, Akselrud L, Gu H, Andreas L J, Grin Y 2012 Inorg. Chem. 51 7472

    [38]

    Okamoto N L, Kusakari M, Tanaka K, Inui H, Otani S 2010 Acta Mater. 58 76

    [39]

    Ma T, Li H, Zheng X, Wang S M, Wang X C, Zhao H Z, Han S B, Liu J, Zhang R F, Zhu P W, Long Y W, Cheng J G, Ma Y M, Zhao Y S, Jin C Q, Yu X H 2017 Adv. Mater. 29 1604003

    [40]

    Daghero D, Gonnelli R S, Ummarino G A, Calzolari A, Dellarocca V, Stepanov V A, Filippov V B, Paderno Y B 2004 Supercond. Sci. Technol. 17 S250

    [41]

    Subramanian C, Murthy T S R C, Suri A K 2007 Int. J. Refract. Met. Hard Mater. 25 345

    [42]

    Frotscher M, Klein W, Bauer J, Fang C M, Halet J F O, Senyshyn A, Baehtz C, Albert B 2007 Z. Anorg. Allg. Chem. 633 2626

    [43]

    Takagiwa H, Nishibori E, Okada N, Takata M, Sakata M, Akimitsu J 2006 Sci. Technol. Adv. Mater. 7 22

    [44]

    Knappschneider A, Litterscheid C, George N C, Brgoch J, Wagner N, Beck J, Kurzman J A, Seshadri R, Albert B 2014 Angew. Chem. Int. Ed. 53 1684

    [45]

    Knappschneider A, Litterscheid C, Brgoch J, George N C, Henke S, Cheetham A K, Hu J G, Seshadri R, Albert B 2015 Chem. Eur. J. 21 8177

    [46]

    Kudaka K, Iizumi K, Sasaki T, Okada S 2001 J. Alloys Compd. 315 104

    [47]

    Okada S, Atoda T, Higashi I, Takahashi Y 1987 J. Mater. Sci. 22 2993

    [48]

    Gou H Y, Tsirlin A A, Bykova E, Abakumov A M, Tendeloo G V, Richter A, Ovsyannikov S V, Kurnosov A V, Trots D M, Konôpková Z, Liermann H P, Dubrovinsky L, Dubrovinskaia N 2014 Phys. Rev. B 89 064108

    [49]

    Meng X X, Bao K, Zhu P W, He Z, Tao Q, Li J J, Mao Z P, Cui T 2012 J. Appl. Phys. 111 112616

    [50]

    Malinovskis P, Palisaitis J, Persson P O Å, Lewin E, Jansson U 2016 J. Vac. Sci. Technol. A 34 031511

    [51]

    Mayrhofer P H, Mitterer C, Wen J G, Greene J E, Petrov I 2005 Appl. Phys. Lett. 86 131909

    [52]

    Yeh C L, Wang H J 2011 J. Alloys Compd. 509 3257

    [53]

    Li J J, Zhao X P, Tao Q, Huang X Q, Zhu P W, Cui T, Wang X 2013 Acta Phys. Sin. 62 026202 (in Chinese)[黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣2013 62 026202]

    [54]

    Kolmogorov A N, Shah S, Margine E R, Bialon A F, Hammerschmidt T, Drautz R 2010 Phys. Rev. Lett. 105 217003

    [55]

    Kapfenberger C, Albert B, Pöttgen R, Huppertz H 2006 Z. Kristallogr. 221 477

    [56]

    Bauer A, Regnat A, Blum C G F, Schönmeyer S G, Pedersen B, Meven M, Wurmehl S, Kuneš J, Pfleiderer C 2014 Phys. Rev. B 90 064414

    [57]

    Yang M, Wang Y C, Yao J L, Li Z P, Zhang J, Wu L L, Li H, Zhang J W, Gou H Y 2014 J. Solid State Chem. 213 52

    [58]

    Zhao W J, Xu B 2012 Comput. Mater. Sci. 65 372

    [59]

    Vajeeston P, Ravindran P, Ravi C, Asokamani R 2001 Phys. Rev. B 63 045115

    [60]

    Niu H Y, Chen X Q, Ren W J, Zhu Q, Oganov A R, Li D Z, Li Y Y 2014 Phys. Chem. Chem. Phys. 16 15866

    [61]

    Kiessling R 1947 Acta Chem. Scand. 1 893

    [62]

    Liang Y C, Yuan X, Fu Z, Li Y, Zhong Z 2012 Appl. Phys. Lett. 101 181908

    [63]

    Li Q, Zhou D, Zheng W T, Ma Y M, Chen C F 2013 Phys. Rev. Lett. 110 136403

    [64]

    Zhao E J, Meng J, Ma Y M, Wu Z J 2010 Phys. Chem. Chem. Phys. 12 13158

    [65]

    Liang Y C, Wu Z B, Yuan X, Zhang W Q, Zhang P H 2016 Nanoscale 8 1055

    [66]

    Dahlqvist M, Jansson U, Rosen J 2015 J. Phys.:Condens. Matter 27 435702

    [67]

    Shein I R, Ivanovskii A L 2006 Phys. Rev. B 73 144108

    [68]

    Zhang M G, Wang H, Wang H B, Zhang X X, Iitaka Toshiaki, Ma Y M 2010 Inorg. Chem. 49 6859

    [69]

    Zhang M G, Yan H Y, Wei Q, Wang H 2012 J. Appl. Phys. 112 013522

    [70]

    Lazar P, Chen X Q, Podloucky R 2009 Phys. Rev. B 80 012103

    [71]

    Tao Q, Zheng D F, Zhao X P, Chen Y L, Li Q, Li Q, Wang C C, Cui T, Ma Y M, Wang X, Zhu P W 2014 Chem. Mater. 26 5297

    [72]

    Andersson S, Lundström T 1968 Acta Chem. Scand. 22 3103

    [73]

    Ding L P, Kuang X Y, Shao P, Huang X F 2014 Inorg. Chem. 53 3471

    [74]

    Zhang X Y, Qin J Q, Ning J L, Sun X W, Li X T, Ma M Z, Liu R P 2013 J. Appl. Phys. 114 183517

    [75]

    Andersson S, Carlsson J O 1970 Acta Chem. Scand. 24 1791

    [76]

    Tsindlekht M I, Leviev G I, Asulin I, Sharoni A, Millo O, Felner I, Paderno Y B, Filippov V B, Belogolovskii M A 2004 Phys. Rev. B 69 212508

    [77]

    Wang J F, Jia J F, Ma L J, Wu H S 2012 Acta Chim. Sin. 70 1643 (in Chinese)[王剑锋, 贾建峰, 马丽娟, 武海顺2012化学学报70 1643]

    [78]

    Zhang R F, Legut D, Niewa R, Argon A S, Veprek S 2010 Phys. Rev. B 82 104104

    [79]

    Aydin S, Simsek M 2009 Phys. Rev. B 80 134107

    [80]

    Gou H Y, Li Z P, Niu H, Gao F M, Zhang J W, Ewing RC, Lian J 2012 Appl. Phys. Lett. 100 111907

    [81]

    Cely A, Tergenius L E, Lundstrom T 1978 J. Less-Common. Metals 61 193

    [82]

    Han L, Wang S M, Zhu J L, Han S B, Li W M, Chen B J, Wang X C, Yu X H, Liu B C, Zhang R F, Long Y W, Cheng J G, Zhang J Z, Zhao Y S, Jin C Q 2015 Appl. Phys. Lett. 106 221902

    [83]

    Chen Y, He D W, Qin J Q, Kou Z L, Bi Y 2011 Int. J. Refract. Met. Hard Mater 29 329

    [84]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [85]

    Šimůnek A 2009 Phys. Rev. B 80 060103

    [86]

    Lu K, Lu L, Chen J 2006 Scr. Mater. 54 1913

    [87]

    Li B, Sun H, Zang C P, Chen C F 2013 Phys. Rev. B 87 174106

    [88]

    Wang Q Q, He J L, Hu W T, Zhao Z S, Zhang C, Luo K, L Y F, Hao C X, L W M, Liu Z Y, Yu D L, Tian Y J, Xu B 2015 J. Materiomics 1 45

    [89]

    Zhang M, Lu M C, Du Y H, Gao L L, Lu C, Liu H Y 2014 J. Chem. Phys. 140 174505

    [90]

    Yu X H, Zhang R F, Weldon D, Vogel C S, Zhang J Z, Brown W D, Wang Y B, Reiche M H, Wang S M, Du S Y, Jin C Q, Zhao Y S 2015 Sci. Rep. 5 12552

    [91]

    Mudgel M, Awana P S V, Bhalla L G, Kishan H 2008 Solid State Commun. 147 439

    [92]

    Escamilla R, Lovera O, Akachi T, Durán A, Falconi R, Morales F, Escudero R 2004 J. Phys.:Condens. Matter 16 5979

    [93]

    Escamilla R, Carvajal E, Cruz-lrisson M, Morales F, Huerta L, Verdin E 2016 J. Mater. Sci. 51 6411

    [94]

    Jung S G, Vanacken J, Moshchalkov V V, Renosto S T, Santo A M C, Machado J S A, Fisk Z, Aguiar Albino J 2013 J. Appl. Phys. 114 133905

    [95]

    Otani S, Korsukova M M, Mitsuhashi T, Kieda N 2000 J. Cryst. Growth 217 378

    [96]

    Souma S, Komoda H, Iida Y, Sato T, Takahashi T, Kunii S 2005 J. Electron. Spectrosc. Relat. Phenom. 144 503

    [97]

    Gasparov V, Sheikin L, Otani S 2007 Physica C 460 623

    [98]

    Xu Y, Zhang L J, Cui T, Li Y, Xie Y, Yu W, Ma Y M, Zou G T 2007 Phys. Rev. B 76 214103

    [99]

    Gabáni S, Takáčová I, Pristáš E, Gažo E, Flachbart K, Mori T, Braithwaite D, Míšek M, Kamenev V K, Hanfland M, Samuely P 2014 Phys. Rev. B 90 045136

    [100]

    Zheng Q, Gumeniuk R, Rosner H, Schnelle W, Prots Y, Burkhardt U, Grin Y, Jasper L A 2015 J. Phys.:Condens. Matter 27 415701

    [101]

    Rades S, Kraemer S, Seshadri R, Albert B 2014 Chem. Mater. 26 1549

  • [1]

    Solozhenko V L, Andrault D, Fiquet G, Mezouar M, Rubie D C 2001 Appl. Phys. Lett. 78 1385

    [2]

    Haines J, Léger J M, Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1

    [3]

    Occelli F, Loubeyre P, Letoullec R 2003 Nat. Mater. 2 151

    [4]

    Boyen H G, Deyneka N, Ziemann P, Banhart F 2002 Diamond Relat. Mater. 11 38

    [5]

    Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y, Tian Y J 2003 Phys. Rev. Lett. 91 015502

    [6]

    Aleksandrov I V, Goncharov A P, Makarenko I N, Zisman A N, Jakovenko E V, Stishov S M 1989 High Pressure Res. 1 333

    [7]

    Kaner R B, Gilman J J, Tolbert S H 2005 Science 308 1268

    [8]

    Zhou D, Wang J S, Cui Q L, Li Q 2014 J. Appl. Phys. 115 113504

    [9]

    Çamurlu Erdem Hasan 2011 J. Alloys Compd. 509 5431

    [10]

    Jiang C L, Pei Z L, Liu Y M, Xiao J Q, Gong J, Sun C 2013 Phys. Status Solidi A 210 1221

    [11]

    Zang C P, Sun H, Tse J S, Chen C F 2012 Phys. Rev. B 86 014108

    [12]

    Fokwa B P T 2010 Eur. J. Inorg. Chem. 2010 3075

    [13]

    Escamilla R, Huerta L 2006 Supercond. Sci. Technol. 19 623

    [14]

    Gu Q F, Krauss G, Steurer W 2008 Adv. Mater. 20 3620

    [15]

    Yin S, He D W, Xu C, Wang W D, Wang H K, Li L, Zhang L L, Liu F M, Liu P P, Wang Z G, Meng C M, Zhu W J 2013 High Pressure Res. 33 409

    [16]

    Gu Y L, Qian Y T, Chen L Y, Zhou F 2003 J. Alloys Compd. 352 325

    [17]

    Gou H Y, Dubrovinskaia N, Bykova E, Tsirlin A A, Kasinathan D, Schnelle W, Richter A, Merlini M, Hanfland M, Abakumov A M, Batuk D, Tendeloo G V, Nakajima Y, Kolmogorov A N, Dubrovinsky L 2013 Phys. Rev. Lett. 111 157002

    [18]

    Zhang R F, Legut D, Lin Z J, Zhao Y S, Mao H K, Veprek S 2012 Phys. Rev. Lett. 108 255502

    [19]

    Lech A T, Turner C L, Mohammadi R, Tolbert S H, Kaner R B 2015 Proc. Natl. Acad. Sci. USA 112 3223

    [20]

    Cheng X Y, Zhang W, Chen X Q, Niu H Y, Liu P T, Du K, Liu G, Li D Z, Cheng H M, Ye H Q, Li Y Y 2013 Appl. Phys. Lett. 103 171903

    [21]

    Zeiringer I, Rogl P, Grytsiv A, Polt J, Bauer E, Giester G 2014 J. Phase Equilib. Diff. 35 384

    [22]

    Tao Q, Zhao X P, Chen Y L, Li J, Li Q, Ma Y M, Li J J, Cui T, Zhu P W, Wang X 2013 RSC Adv. 3 18317

    [23]

    Zhang M G, Wang H, Wang H B, Cui T, Ma Y M 2010 J. Phys. Chem. C 114 6722

    [24]

    Wang B, Li X, Wang Y X, Tu Y F 2011 J. Phys. Chem. C 115 21429

    [25]

    Gou H Y, Steinle-Neumann G, Bykova E, Nakajima Y, Miyajima N, Li Y, Ovsyannikov S V, Dubrovinsky L S, Dubrovinskaia N 2013 Appl. Phys. Lett. 102 061906

    [26]

    Fan J, Bao K, Jin X L, Meng X X, Duan D F, Liu B B, Cui T 2012 J. Mater. Chem. 22 17630

    [27]

    Chung H Y, Weinberger M B, Levine J B, Kavner A, Yang J M, Tolbert S H, Kaner R B 2007 Science 316 436

    [28]

    Mohammadi R, Lech A T, Xie M, Weaver B E, Yeung M T, Tolbert S H, Kaner R B 2011 Proc. Natl. Acad. Sci. USA 108 10958

    [29]

    Niu H Y, Wang J Q, Chen X Q, Li D Z, Li Y Y, Lazar P, Podloucky R, Kolmogorov A N 2012 Phys. Rev. B 85 144116

    [30]

    Knappschneider A, Litterscheid C, Dzivenko D, Kurzman J A, Seshadri R, Wagner N, Beck J, Riedel R, Albert B 2013 Inorg. Chem. 52 540

    [31]

    Li B, Sun H, Chen C F 2014 Phys. Rev. B 90 014106

    [32]

    Yeh C L, Hsu W S 2008 J. Alloys Compd. 457 191

    [33]

    Xie M, Mohammadi R, Mao Z, Armentrout M M, Kavner A, Kaner R B, Tolbert S H 2012 Phys. Rev. B 85 064118

    [34]

    Mohammadi R, Xie M, Lech A T, Turner C L, Kavner A, Tolbert S H, Kaner R B 2012 J. Am. Chem. Soc. 134 20660

    [35]

    Zhu H, Ni C Y, Zhang F M, Du Y W, Xiao J Q 2005 J. Appl. Phys. 97 10M512

    [36]

    Simonson J W, Wu D, Poon S J, Wolf S A 2010 J. Supercond. Novel Magn. 23 417

    [37]

    Zheng Q, Kohout M, Gumeniuk R, Abramchuk N, Borrmann H, Prots Y, Burkhardt U, Schnelle W, Akselrud L, Gu H, Andreas L J, Grin Y 2012 Inorg. Chem. 51 7472

    [38]

    Okamoto N L, Kusakari M, Tanaka K, Inui H, Otani S 2010 Acta Mater. 58 76

    [39]

    Ma T, Li H, Zheng X, Wang S M, Wang X C, Zhao H Z, Han S B, Liu J, Zhang R F, Zhu P W, Long Y W, Cheng J G, Ma Y M, Zhao Y S, Jin C Q, Yu X H 2017 Adv. Mater. 29 1604003

    [40]

    Daghero D, Gonnelli R S, Ummarino G A, Calzolari A, Dellarocca V, Stepanov V A, Filippov V B, Paderno Y B 2004 Supercond. Sci. Technol. 17 S250

    [41]

    Subramanian C, Murthy T S R C, Suri A K 2007 Int. J. Refract. Met. Hard Mater. 25 345

    [42]

    Frotscher M, Klein W, Bauer J, Fang C M, Halet J F O, Senyshyn A, Baehtz C, Albert B 2007 Z. Anorg. Allg. Chem. 633 2626

    [43]

    Takagiwa H, Nishibori E, Okada N, Takata M, Sakata M, Akimitsu J 2006 Sci. Technol. Adv. Mater. 7 22

    [44]

    Knappschneider A, Litterscheid C, George N C, Brgoch J, Wagner N, Beck J, Kurzman J A, Seshadri R, Albert B 2014 Angew. Chem. Int. Ed. 53 1684

    [45]

    Knappschneider A, Litterscheid C, Brgoch J, George N C, Henke S, Cheetham A K, Hu J G, Seshadri R, Albert B 2015 Chem. Eur. J. 21 8177

    [46]

    Kudaka K, Iizumi K, Sasaki T, Okada S 2001 J. Alloys Compd. 315 104

    [47]

    Okada S, Atoda T, Higashi I, Takahashi Y 1987 J. Mater. Sci. 22 2993

    [48]

    Gou H Y, Tsirlin A A, Bykova E, Abakumov A M, Tendeloo G V, Richter A, Ovsyannikov S V, Kurnosov A V, Trots D M, Konôpková Z, Liermann H P, Dubrovinsky L, Dubrovinskaia N 2014 Phys. Rev. B 89 064108

    [49]

    Meng X X, Bao K, Zhu P W, He Z, Tao Q, Li J J, Mao Z P, Cui T 2012 J. Appl. Phys. 111 112616

    [50]

    Malinovskis P, Palisaitis J, Persson P O Å, Lewin E, Jansson U 2016 J. Vac. Sci. Technol. A 34 031511

    [51]

    Mayrhofer P H, Mitterer C, Wen J G, Greene J E, Petrov I 2005 Appl. Phys. Lett. 86 131909

    [52]

    Yeh C L, Wang H J 2011 J. Alloys Compd. 509 3257

    [53]

    Li J J, Zhao X P, Tao Q, Huang X Q, Zhu P W, Cui T, Wang X 2013 Acta Phys. Sin. 62 026202 (in Chinese)[黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣2013 62 026202]

    [54]

    Kolmogorov A N, Shah S, Margine E R, Bialon A F, Hammerschmidt T, Drautz R 2010 Phys. Rev. Lett. 105 217003

    [55]

    Kapfenberger C, Albert B, Pöttgen R, Huppertz H 2006 Z. Kristallogr. 221 477

    [56]

    Bauer A, Regnat A, Blum C G F, Schönmeyer S G, Pedersen B, Meven M, Wurmehl S, Kuneš J, Pfleiderer C 2014 Phys. Rev. B 90 064414

    [57]

    Yang M, Wang Y C, Yao J L, Li Z P, Zhang J, Wu L L, Li H, Zhang J W, Gou H Y 2014 J. Solid State Chem. 213 52

    [58]

    Zhao W J, Xu B 2012 Comput. Mater. Sci. 65 372

    [59]

    Vajeeston P, Ravindran P, Ravi C, Asokamani R 2001 Phys. Rev. B 63 045115

    [60]

    Niu H Y, Chen X Q, Ren W J, Zhu Q, Oganov A R, Li D Z, Li Y Y 2014 Phys. Chem. Chem. Phys. 16 15866

    [61]

    Kiessling R 1947 Acta Chem. Scand. 1 893

    [62]

    Liang Y C, Yuan X, Fu Z, Li Y, Zhong Z 2012 Appl. Phys. Lett. 101 181908

    [63]

    Li Q, Zhou D, Zheng W T, Ma Y M, Chen C F 2013 Phys. Rev. Lett. 110 136403

    [64]

    Zhao E J, Meng J, Ma Y M, Wu Z J 2010 Phys. Chem. Chem. Phys. 12 13158

    [65]

    Liang Y C, Wu Z B, Yuan X, Zhang W Q, Zhang P H 2016 Nanoscale 8 1055

    [66]

    Dahlqvist M, Jansson U, Rosen J 2015 J. Phys.:Condens. Matter 27 435702

    [67]

    Shein I R, Ivanovskii A L 2006 Phys. Rev. B 73 144108

    [68]

    Zhang M G, Wang H, Wang H B, Zhang X X, Iitaka Toshiaki, Ma Y M 2010 Inorg. Chem. 49 6859

    [69]

    Zhang M G, Yan H Y, Wei Q, Wang H 2012 J. Appl. Phys. 112 013522

    [70]

    Lazar P, Chen X Q, Podloucky R 2009 Phys. Rev. B 80 012103

    [71]

    Tao Q, Zheng D F, Zhao X P, Chen Y L, Li Q, Li Q, Wang C C, Cui T, Ma Y M, Wang X, Zhu P W 2014 Chem. Mater. 26 5297

    [72]

    Andersson S, Lundström T 1968 Acta Chem. Scand. 22 3103

    [73]

    Ding L P, Kuang X Y, Shao P, Huang X F 2014 Inorg. Chem. 53 3471

    [74]

    Zhang X Y, Qin J Q, Ning J L, Sun X W, Li X T, Ma M Z, Liu R P 2013 J. Appl. Phys. 114 183517

    [75]

    Andersson S, Carlsson J O 1970 Acta Chem. Scand. 24 1791

    [76]

    Tsindlekht M I, Leviev G I, Asulin I, Sharoni A, Millo O, Felner I, Paderno Y B, Filippov V B, Belogolovskii M A 2004 Phys. Rev. B 69 212508

    [77]

    Wang J F, Jia J F, Ma L J, Wu H S 2012 Acta Chim. Sin. 70 1643 (in Chinese)[王剑锋, 贾建峰, 马丽娟, 武海顺2012化学学报70 1643]

    [78]

    Zhang R F, Legut D, Niewa R, Argon A S, Veprek S 2010 Phys. Rev. B 82 104104

    [79]

    Aydin S, Simsek M 2009 Phys. Rev. B 80 134107

    [80]

    Gou H Y, Li Z P, Niu H, Gao F M, Zhang J W, Ewing RC, Lian J 2012 Appl. Phys. Lett. 100 111907

    [81]

    Cely A, Tergenius L E, Lundstrom T 1978 J. Less-Common. Metals 61 193

    [82]

    Han L, Wang S M, Zhu J L, Han S B, Li W M, Chen B J, Wang X C, Yu X H, Liu B C, Zhang R F, Long Y W, Cheng J G, Zhang J Z, Zhao Y S, Jin C Q 2015 Appl. Phys. Lett. 106 221902

    [83]

    Chen Y, He D W, Qin J Q, Kou Z L, Bi Y 2011 Int. J. Refract. Met. Hard Mater 29 329

    [84]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805

    [85]

    Šimůnek A 2009 Phys. Rev. B 80 060103

    [86]

    Lu K, Lu L, Chen J 2006 Scr. Mater. 54 1913

    [87]

    Li B, Sun H, Zang C P, Chen C F 2013 Phys. Rev. B 87 174106

    [88]

    Wang Q Q, He J L, Hu W T, Zhao Z S, Zhang C, Luo K, L Y F, Hao C X, L W M, Liu Z Y, Yu D L, Tian Y J, Xu B 2015 J. Materiomics 1 45

    [89]

    Zhang M, Lu M C, Du Y H, Gao L L, Lu C, Liu H Y 2014 J. Chem. Phys. 140 174505

    [90]

    Yu X H, Zhang R F, Weldon D, Vogel C S, Zhang J Z, Brown W D, Wang Y B, Reiche M H, Wang S M, Du S Y, Jin C Q, Zhao Y S 2015 Sci. Rep. 5 12552

    [91]

    Mudgel M, Awana P S V, Bhalla L G, Kishan H 2008 Solid State Commun. 147 439

    [92]

    Escamilla R, Lovera O, Akachi T, Durán A, Falconi R, Morales F, Escudero R 2004 J. Phys.:Condens. Matter 16 5979

    [93]

    Escamilla R, Carvajal E, Cruz-lrisson M, Morales F, Huerta L, Verdin E 2016 J. Mater. Sci. 51 6411

    [94]

    Jung S G, Vanacken J, Moshchalkov V V, Renosto S T, Santo A M C, Machado J S A, Fisk Z, Aguiar Albino J 2013 J. Appl. Phys. 114 133905

    [95]

    Otani S, Korsukova M M, Mitsuhashi T, Kieda N 2000 J. Cryst. Growth 217 378

    [96]

    Souma S, Komoda H, Iida Y, Sato T, Takahashi T, Kunii S 2005 J. Electron. Spectrosc. Relat. Phenom. 144 503

    [97]

    Gasparov V, Sheikin L, Otani S 2007 Physica C 460 623

    [98]

    Xu Y, Zhang L J, Cui T, Li Y, Xie Y, Yu W, Ma Y M, Zou G T 2007 Phys. Rev. B 76 214103

    [99]

    Gabáni S, Takáčová I, Pristáš E, Gažo E, Flachbart K, Mori T, Braithwaite D, Míšek M, Kamenev V K, Hanfland M, Samuely P 2014 Phys. Rev. B 90 045136

    [100]

    Zheng Q, Gumeniuk R, Rosner H, Schnelle W, Prots Y, Burkhardt U, Grin Y, Jasper L A 2015 J. Phys.:Condens. Matter 27 415701

    [101]

    Rades S, Kraemer S, Seshadri R, Albert B 2014 Chem. Mater. 26 1549

  • [1] 范人杰, 江先燕, 陶奇睿, 梅期才, 唐颖菲, 陈志权, 苏贤礼, 唐新峰. In1+xTe化合物的结构及热电性能研究.  , 2021, 70(13): 137102. doi: 10.7498/aps.70.20210041
    [2] 孙小伟, 宋婷, 刘子江, 万桂新, 张磊, 常文利. 氟化镁高压萤石结构稳定性及热物性的数值模拟.  , 2020, 69(15): 156202. doi: 10.7498/aps.69.20200289
    [3] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算.  , 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [4] 罗强, 杨恒, 郭平, 赵建飞. N型甲烷水合物结构和电子性质的密度泛函理论计算.  , 2019, 68(16): 169101. doi: 10.7498/aps.68.20182230
    [5] 李勇, 王应, 李尚升, 李宗宝, 罗开武, 冉茂武, 宋谋胜. 硼硫协同掺杂金刚石的高压合成与电学性能研究.  , 2019, 68(9): 098101. doi: 10.7498/aps.68.20190133
    [6] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安. 硼氢协同掺杂Ib型金刚石大单晶的高温高压合成与电学性能研究.  , 2016, 65(11): 118103. doi: 10.7498/aps.65.118103
    [7] 肖宏宇, 李尚升, 秦玉琨, 梁中翥, 张永胜, 张东梅, 张义顺. 高温高压下掺硼宝石级金刚石单晶生长特性的研究.  , 2014, 63(19): 198101. doi: 10.7498/aps.63.198101
    [8] 黎军军, 赵学坪, 陶强, 黄晓庆, 朱品文, 崔田, 王欣. 二硼化钛的高温高压制备及其物性.  , 2013, 62(2): 026202. doi: 10.7498/aps.62.026202
    [9] 卢志文, 仲志国, 刘克涛, 宋海珍, 李根全. 高温高压下Ag-Mg-Zn合金中金属间化合物的微观结构与热动力学性质的第一性原理计算.  , 2013, 62(1): 016106. doi: 10.7498/aps.62.016106
    [10] 屈年瑞, 高发明. 固态二氧化碳电子结构及性能的理论研究.  , 2011, 60(6): 067102. doi: 10.7498/aps.60.067102
    [11] 何智兵, 阳志林, 闫建成, 宋之敏, 卢铁城. 辉光放电聚合物结构及力学性质研究.  , 2011, 60(8): 086803. doi: 10.7498/aps.60.086803
    [12] 邓书康, 唐新峰, 杨培志, 鄢永高. Cd掺杂p型Ge基Ba8Ga16CdxGe30-x Ⅰ型笼合物的结构及热电特性.  , 2009, 58(6): 4274-4280. doi: 10.7498/aps.58.4274
    [13] 苏贤礼, 唐新峰, 李 涵, 邓书康. Ga填充n型方钴矿化合物的结构及热电性能.  , 2008, 57(10): 6488-6493. doi: 10.7498/aps.57.6488
    [14] 杨海波, 胡 明, 张 伟, 张绪瑞, 李德军, 王明霞. 基于纳米压痕法的多孔硅硬度及杨氏模量与微观结构关系研究.  , 2007, 56(7): 4032-4038. doi: 10.7498/aps.56.4032
    [15] 李 涵, 唐新峰, 赵文俞, 张清杰. 双原子填充式skutterudite化合物的结构及X射线光电子能谱分析.  , 2006, 55(12): 6506-6510. doi: 10.7498/aps.55.6506
    [16] 白锁柱, 姚 斌, 郑大方, 邢国忠, 苏文辉. 新型BCN化合物的结构表征和相转变.  , 2006, 55(11): 5740-5744. doi: 10.7498/aps.55.5740
    [17] 孙小伟, 褚衍东, 刘子江, 刘玉孝, 王成伟, 刘维民. 高温高压下闪锌矿相GaN结构和热力学特性的分子动力学研究.  , 2005, 54(12): 5830-5836. doi: 10.7498/aps.54.5830
    [18] 郭鸿涌, 刘宝丹, 唐宁, 罗鸿志, 李养贤, 杨伏明, 吴光恒. Co和稳定元素对Nd3(Fe,Co,M)29(M=Ti,V,Cr) 化合物结构和磁性的影响.  , 2004, 53(1): 189-193. doi: 10.7498/aps.53.189
    [19] 巫 翔, 秦 善, 吴自玉, 董宇辉, 刘 景, 李晓东. 钙钛矿CaTiO3的超高压结构研究.  , 2004, 53(6): 1967-1971. doi: 10.7498/aps.53.1967
    [20] 王焕荣, 滕新营, 石志强, 叶以富, 闵光辉. 非晶态Cu56Zr44合金的结构及其等温退火晶化过程的研究.  , 2001, 50(11): 2192-2197. doi: 10.7498/aps.50.2192
计量
  • 文章访问数:  16509
  • PDF下载量:  1099
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-18
  • 修回日期:  2016-11-25
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map