搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单轴压缩下固态硝基苯的第一性原理研究

范俊宇 郑朝阳 苏艳 赵纪军

引用本文:
Citation:

单轴压缩下固态硝基苯的第一性原理研究

范俊宇, 郑朝阳, 苏艳, 赵纪军

First-principle simulation of solid nitrobenzene under uniaxial compression

Fan Jun-Yu, Zheng Zhao-Yang, Su Yan, Zhao Ji-Jun
PDF
导出引用
  • 采用第一性原理密度泛函理论结合经典色散修正方法,对固态硝基苯在单轴压缩下的基本结构关系进行了计算.静水压缩和单轴压缩都压缩到初始平衡体积的70%.将静水压下优化后的晶胞体积、晶格参数以及平衡条件下的晶格能与实验值进行了比较,均符合较好.同时,为了充分地表征固态硝基苯的各向异性,将硝基苯沿着三个晶格矢量的方向进行单轴压缩,把每个方向的应力张量、能带带隙、每个原子能量的改变分别作为体积压缩比的函数进行了比较和分析.其中,最显著的各向异性效应是在体积压缩比为0.76时,沿X轴压缩导致硝基苯能带带隙闭合,体系呈金属化;而静水压缩或沿Y轴和Z轴压缩时体系始终呈半导体状态,带隙均大于1.59 eV.为了充分理解这一各向异性特性,我们计算了硝基苯晶体的局域态密度和电荷密度分布,并对金属化现象做出了合理的分析和解释.在不同的压力加载条件下,通过对不同物理量的计算,发现X轴方向是硝基苯晶体内部最敏感的方向.这些各向异性效应的研究将有助于人们在原子尺度上深入理解固态硝基苯的物理化学性质.
    Energetic materials (EMs) including explosives, propellants and pyrotechnics have been widely used for the military and many other purposes. Solid nitrobenzene (an organic molecular crystal) could be considered as a prototype of energetic material. Up to now, numerous studies have been devoted to crystal structures, spectrum properties and decomposition mechanisms for solid nitrobenzene experimentally and theoretically. However there has been a lack of the comprehensive understanding of the anisotropic characteristics under different loading conditions. Thus we investigate the hydrostatic and uniaxial compressions along three different lattice directions to determine this anisotropic effect. In this work, the density functional theory calculations are performed based on Cambridge Sequential Total Energy Package (CASTEP) code using normconserving pseudo potentials and a kinetic energy cutoff of 700 eV. The generalized gradient approximation with the Perdew-Burke-Ernzerhof parameterization is used. Monkhorst-Pack k-point meshes with a density of 0.05 -1 are used for Brillouin-zone integration. The empirical dispersion correction by Grimme is taken to account for week intermolecular interactions. The hydrostatic compressions are applied from 0 GPa to 20 GPa. Cell volume, lattice shape and coordinates of the atoms could be fully relaxed. while uniaxial compression is applied up to 70% of the equilibrium cell volume in steps of 2% along their lattice directions respectively. At each compression step, only atomic coordinates are allowed to relax, with the lattice fixed. The equilibrium lattice structures under hydrostatic compressions are obtained by full relaxation at 0 K temperature. In ambient condition, the calculated volume and parameter of the unit cell are underestimated compared with the experimental data, and corresponding errors are -2.98%, 0.01%, -4.39%, 5.71% respectively. In contrast, the calculated lattice energy is overestimated compared with the range of experimental results with 5.71% of the error. In high pressure condition, the volume and cell parameter of the unit cell as a function of compression ratio are plotted and compared with the experimental data. The theoretical and experimental values are close with the increase of the pressure, for instant, the error decreases from -4.39% at 0 GPa to -1.93% at 4 GPa. On the other hand, the uniaxial compression is applied along the directions of three lattice vectors. The changes of stress tensor, band gap, energy per atom as a function of compression ratio are also plotted and discussed, which can characterize the anisotropic effect of solid nitrobenzene. The most noticeable effect of anisotropy in solid nitrobenzene is the metallization at V/V0=0.76 compressed along the X axis, while the solid nitrobenzene under hydrostatic pressure or other uniaxial compressions up to V/V0=0.76 remains semiconductor with band gap larger than 1.591 eV. By analyzing the local density of states and charge density distribution of nitrobenzene crystal, we confirm that the metallization is caused by the overlap of the electron from benzene ring. Through calculating different physical parameters, we find that X axis is the most sensitive direction of nitrobenzene crystal. The studies of anisotropic effects are expected to shed light on the physical and chemical properties of solid nitrobenzene on an atomistic scale and provide several insights for experiments.
      通信作者: 苏艳, su.yan@dlut.edu.cn
    • 基金项目: 国防基础科研核基础科学挑战计划(批准号:JCKY2016212A501)、国家自然科学基金(批准号:11674046)、中国博士后科学基金(批准号:2016M592704)和大连理工大学超算中心资助的课题.
      Corresponding author: Su Yan, su.yan@dlut.edu.cn
    • Funds: Project supported by the Science Challenging Program of the National Defense Basic Scientific Research of China (Grant No. JCKY2016212A501), the National Natural Science Foundation of China (Grant No. 11674046), the China Postdoctoral Science Foundation (Grant No. 2016M592704), and the Supercomputing Center of Dalian University of Technology, China.
    [1]

    Zheng Z Y, Zhao J J 2016 Chin. Phys. B 25 076202

    [2]

    Sikder A, Sikder N 2004 J. Hazard. Mater. 112 1

    [3]

    Politzer P, Murray J S, Seminario J M, Lane P, Grice M E, Concha M C 2001 J. Mol. Struc.:Theochem 573 1

    [4]

    Zheng Z Y, Zhao J J 2015 Chin. J. High Pressure Phys. 29 81 (in Chinese)[郑朝阳, 赵纪军2015高压 29 81]

    [5]

    Fried L E, Manaa M R, Pagoria P F, Simpson R L 2001 Annu. Rev. Mater. Res. 31 291

    [6]

    Zhang L, Chen L 2013 Acta Phys. Sin. 62 138201 (in Chinese)[张力, 陈朗2013 62 138201]

    [7]

    Cheng H P, Dan J K, Huang Z M, Peng H, Chen G H 2013 Acta Phys. Sin. 62 163102 (in Chinese)[程和平, 但加坤, 黄智蒙, 彭辉, 陈光华2013 62 163102]

    [8]

    Meng Z R, Zhang W B, Du Y, Shang L P, Deng H 2015 Acta Phys. Sin. 64 073302 (in Chinese)[孟增睿, 张伟斌, 杜宇, 尚丽平, 邓琥2015 64 073302]

    [9]

    Zhang L, Chen L 2014 Acta Phys. Sin. 63 098105 (in Chinese)[张力, 陈朗2014 63 098105]

    [10]

    Boese R, Bläser D, Nussbaumer M, Krygowski T M 1992 Struct. Chem. 3 363

    [11]

    Trotter J 1959 Acta Crystallogr. 12 884

    [12]

    Larsen N W 2010 J. Mol. Struct. 963 100

    [13]

    Borisenko K B, Hargittai I 1996 J. Mol. Struct. 382 171

    [14]

    Domenicano A, Schultz G, Hargittai I, Colapietro M, Portalone G, George P, Bock C W 1989 Struct. Chem. 1 107

    [15]

    Clarkson J, Smith W E 2003 J. Mol. Struct. 655 413

    [16]

    Kozu N, Arai M, Tamura M, Fujihisa H, Aoki K, Yoshida M 2000 Jpn. J. Appl. Phys. 39 4875

    [17]

    Kobayashi T, Sekine T 2000 Phys. Rev. B 62 5281

    [18]

    Liu H, Zhao J, Du J, Gong Z, Ji G, Wei D 2007 Phys. Lett. A 367 383

    [19]

    Chen F, Zhang H, Zhao F, Li Q l, Qu J Y 2008 J. Mol. Struc.:Theochem. 864 89

    [20]

    Wang W P, Liu F S, Liu Q J, Liu Z T 2016 Comput. Theor. Chem. 1075 98

    [21]

    Pruitt C J M, Goebbert D J 2013 Chem. Phys. Lett. 580 21

    [22]

    Fayet G, Joubert L, Rotureau P, Adamo C 2008 J. Phys. Chem. A 112 4054

    [23]

    Pein B C, Sun Y, Dlott D D 2013 J. Phys. Chem. A 117 6066

    [24]

    Dong S L, Sang D P 1996 J. Hazard. Mater. 51 67

    [25]

    Conroy M, Oleynik I, Zybin S, White C 2008 Phys. Rev. B 77 094107

    [26]

    Conroy M, Oleynik I, Zybin S, White C 2009 J. Phys. Chem. A 113 3610

    [27]

    Margetis D, Kaxiras E, Elstner M, Frauenheim T, Manaa M R 2002 J. Chem. Phys. 117 788

    [28]

    Grimme S 2011 Wires. Comput. Mol. Sci. 1 211

    [29]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104

    [30]

    Parr R G, Yang W 1995 Annu. Rev. Phys. Chem. 46 701

    [31]

    Segall M, Lindan P J, Probert M A, Pickard C, Hasnip P, Clark S, Payne M 2002 J. Phys.:Condens. Mat. 14 2717

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [34]

    Caillet J T, Claverie P 1975 Acta Crystallogr. Sec. A 31 448

    [35]

    Liu H, Zhao J J, Wei D Q, Gong Z Z 2006 J. Chem. Phys. 124 124501

    [36]

    Cui H L, Ji G F, Zhao J J, Zhao F, Chen X R, Zhang Q M, Wei D Q 2010 Mol. Simulat. 36 670

  • [1]

    Zheng Z Y, Zhao J J 2016 Chin. Phys. B 25 076202

    [2]

    Sikder A, Sikder N 2004 J. Hazard. Mater. 112 1

    [3]

    Politzer P, Murray J S, Seminario J M, Lane P, Grice M E, Concha M C 2001 J. Mol. Struc.:Theochem 573 1

    [4]

    Zheng Z Y, Zhao J J 2015 Chin. J. High Pressure Phys. 29 81 (in Chinese)[郑朝阳, 赵纪军2015高压 29 81]

    [5]

    Fried L E, Manaa M R, Pagoria P F, Simpson R L 2001 Annu. Rev. Mater. Res. 31 291

    [6]

    Zhang L, Chen L 2013 Acta Phys. Sin. 62 138201 (in Chinese)[张力, 陈朗2013 62 138201]

    [7]

    Cheng H P, Dan J K, Huang Z M, Peng H, Chen G H 2013 Acta Phys. Sin. 62 163102 (in Chinese)[程和平, 但加坤, 黄智蒙, 彭辉, 陈光华2013 62 163102]

    [8]

    Meng Z R, Zhang W B, Du Y, Shang L P, Deng H 2015 Acta Phys. Sin. 64 073302 (in Chinese)[孟增睿, 张伟斌, 杜宇, 尚丽平, 邓琥2015 64 073302]

    [9]

    Zhang L, Chen L 2014 Acta Phys. Sin. 63 098105 (in Chinese)[张力, 陈朗2014 63 098105]

    [10]

    Boese R, Bläser D, Nussbaumer M, Krygowski T M 1992 Struct. Chem. 3 363

    [11]

    Trotter J 1959 Acta Crystallogr. 12 884

    [12]

    Larsen N W 2010 J. Mol. Struct. 963 100

    [13]

    Borisenko K B, Hargittai I 1996 J. Mol. Struct. 382 171

    [14]

    Domenicano A, Schultz G, Hargittai I, Colapietro M, Portalone G, George P, Bock C W 1989 Struct. Chem. 1 107

    [15]

    Clarkson J, Smith W E 2003 J. Mol. Struct. 655 413

    [16]

    Kozu N, Arai M, Tamura M, Fujihisa H, Aoki K, Yoshida M 2000 Jpn. J. Appl. Phys. 39 4875

    [17]

    Kobayashi T, Sekine T 2000 Phys. Rev. B 62 5281

    [18]

    Liu H, Zhao J, Du J, Gong Z, Ji G, Wei D 2007 Phys. Lett. A 367 383

    [19]

    Chen F, Zhang H, Zhao F, Li Q l, Qu J Y 2008 J. Mol. Struc.:Theochem. 864 89

    [20]

    Wang W P, Liu F S, Liu Q J, Liu Z T 2016 Comput. Theor. Chem. 1075 98

    [21]

    Pruitt C J M, Goebbert D J 2013 Chem. Phys. Lett. 580 21

    [22]

    Fayet G, Joubert L, Rotureau P, Adamo C 2008 J. Phys. Chem. A 112 4054

    [23]

    Pein B C, Sun Y, Dlott D D 2013 J. Phys. Chem. A 117 6066

    [24]

    Dong S L, Sang D P 1996 J. Hazard. Mater. 51 67

    [25]

    Conroy M, Oleynik I, Zybin S, White C 2008 Phys. Rev. B 77 094107

    [26]

    Conroy M, Oleynik I, Zybin S, White C 2009 J. Phys. Chem. A 113 3610

    [27]

    Margetis D, Kaxiras E, Elstner M, Frauenheim T, Manaa M R 2002 J. Chem. Phys. 117 788

    [28]

    Grimme S 2011 Wires. Comput. Mol. Sci. 1 211

    [29]

    Grimme S, Antony J, Ehrlich S, Krieg H 2010 J. Chem. Phys. 132 154104

    [30]

    Parr R G, Yang W 1995 Annu. Rev. Phys. Chem. 46 701

    [31]

    Segall M, Lindan P J, Probert M A, Pickard C, Hasnip P, Clark S, Payne M 2002 J. Phys.:Condens. Mat. 14 2717

    [32]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [33]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188

    [34]

    Caillet J T, Claverie P 1975 Acta Crystallogr. Sec. A 31 448

    [35]

    Liu H, Zhao J J, Wei D Q, Gong Z Z 2006 J. Chem. Phys. 124 124501

    [36]

    Cui H L, Ji G F, Zhao J J, Zhao F, Chen X R, Zhang Q M, Wei D Q 2010 Mol. Simulat. 36 670

  • [1] 李巧利, 李慎慎, 肖继军, 陈兆旭. 静水压力作用下(H2dabco)[K(ClO4)3]结构与稳定性的第一性原理研究.  , 2024, 73(14): 143101. doi: 10.7498/aps.73.20240477
    [2] 黄君辉, 李元和, 王健, 李叔伦, 倪海桥, 牛智川, 窦秀明, 孙宝权. 静水压力调谐Ag纳米颗粒散射场下量子点激子寿命.  , 2022, 71(24): 247302. doi: 10.7498/aps.71.20221344
    [3] 高立科, 赵先豪, 刁心峰, 唐天宇, 唐延林. 第一性原理对CsSnBr3施加静水压力后光电性质的探究.  , 2021, 70(15): 158801. doi: 10.7498/aps.70.20210397
    [4] 彭亚晶, 孙爽, 刘伟娜, 刘宇辉. 冲击加载下环三亚甲基三硝胺的初始动态响应及反应机理.  , 2021, 70(15): 158202. doi: 10.7498/aps.70.20201279
    [5] 王鹏举, 范俊宇, 苏艳, 赵纪军. 基于机器学习构建的环三亚甲基三硝胺晶体势.  , 2020, 69(23): 238702. doi: 10.7498/aps.69.20200690
    [6] 种涛, 莫建军, 郑贤旭, 傅华, 赵剑衡, 蔡进涛. 斜波压缩下RDX单晶的动力学特性.  , 2020, 69(17): 176101. doi: 10.7498/aps.69.20200318
    [7] 彭亚晶, 孙爽, 宋云飞, 杨延强. 液相硝基甲烷分子振动特性的相干反斯托克斯拉曼散射光谱.  , 2018, 67(2): 024208. doi: 10.7498/aps.67.20171828
    [8] 朱岩, 张新宇, 张素红, 马明臻, 刘日平, 田宏燕. Mg2Si化合物在静水压下的电子输运性能研究.  , 2015, 64(7): 077103. doi: 10.7498/aps.64.077103
    [9] 彭亚晶, 蒋艳雪. 分子空位缺陷对环三亚甲基三硝胺含能材料几何结构、电子结构及振动特性的影响.  , 2015, 64(24): 243102. doi: 10.7498/aps.64.243102
    [10] 徐军, 肖晓春, 潘一山, 丁鑫. 基于J积分的颗粒煤岩单轴压缩下裂纹扩展研究.  , 2014, 63(21): 214602. doi: 10.7498/aps.63.214602
    [11] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度.  , 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [12] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀固体靶的冲击压强.  , 2013, 62(17): 170601. doi: 10.7498/aps.62.170601
    [13] 王文亭, 胡冰, 王明伟. 飞秒激光精细加工含能材料.  , 2013, 62(6): 060601. doi: 10.7498/aps.62.060601
    [14] 蒋冬冬, 谷岩, 冯玉军, 杜金梅. 静水压下锆锡钛酸铅铁电陶瓷相变和介电性能研究.  , 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [15] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算.  , 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [16] 彭亚晶, 刘玉强, 王英惠, 张淑平, 杨延强. 皮秒和纳秒单脉冲激光加热Al/NC复合纳米含能材料的热动力学分析.  , 2009, 58(1): 655-661. doi: 10.7498/aps.58.655
    [17] 夏庆中, 陈 波, 曾贵玉, 罗顺火, 董海山, 荣利霞, 董宝中. 三氨基三硝基苯材料微孔结构的小角x射线散射实验研究.  , 2005, 54(7): 3273-3277. doi: 10.7498/aps.54.3273
    [18] 李凤英, 傅顺声, 王汝菊, M.H.Manghnani. 钠玻璃与钛玻璃在静水压下的弹性性能.  , 2000, 49(11): 2129-2132. doi: 10.7498/aps.49.2129
    [19] 孙威立, 李兆民. 静水压下MgO:Fe~(3+)和MgO:Mn~(2+)的电子顺磁共振研究.  , 1995, 44(10): 1661-1669. doi: 10.7498/aps.44.1661
    [20] 苏昉, 谢斌, 赵明文, 吴希俊. 纳米CaF2离子电导率和介电常数的静水压效应.  , 1995, 44(5): 755-762. doi: 10.7498/aps.44.755
计量
  • 文章访问数:  6374
  • PDF下载量:  416
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 修回日期:  2016-11-21
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map