搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混沌激光的无后处理多位物理随机数高速产生技术研究

孙媛媛 李璞 郭龑强 郭晓敏 刘香莲 张建国 桑鲁骁 王云才

引用本文:
Citation:

基于混沌激光的无后处理多位物理随机数高速产生技术研究

孙媛媛, 李璞, 郭龑强, 郭晓敏, 刘香莲, 张建国, 桑鲁骁, 王云才

Chaotic laser-based ultrafast multi-bit physical random number generation without post-process

Sun Yuan-Yuan, Li Pu, Guo Yan-Qiang, Guo Xiao-Min, Liu Xiang-Lian, Zhang Jian-Guo, Sang Lu-Xiao, Wang Yun-Cai
PDF
导出引用
  • 提出一种基于混沌激光的无后处理多位物理随机数高速提取方法.该方法在光域中利用锁模激光器作为光时钟,通过太赫兹光非对称解复用器完成对混沌激光的超低抖动光采样,无需射频时钟及后续逻辑处理过程的参与,经多位比较量化可直接产生优质物理随机数.并以光反馈半导体激光器这一典型的混沌激光产生装置作为熵源对所提方法进行了原理性实验论证.结果显示,光反馈半导体激光器产生的6 GHz混沌激光经5 GSa/s实时、低抖动光采样后,利用并行输出型多位比较器对所获混沌脉冲序列进行量化处理,选取最低有效位4位,可直接产生速率达20 Gb/s的随机数.该随机数速率由选取的量化结果最低有效位数和光采样率联合决定,而当前光采样率受限于所用混沌激光熵源的带宽.本文工作可为硬件上实现更高速物理随机数的实时、在线产生提供有力的技术和理论支撑.
    Random numbers have great application value in the fields of secure communications, which are commonly used as secret keys to encrypt the information. To guarantee that the information is absolutely secure in the current high-speed communication, the applied random keys should possess a generation speed not less than the encrypted data rate, according to one-time pad theory found by Shannon (Shannon C E 1949 Bell.Syst.Tech.J. 28 656) Pseudo-random numbers generated by algorithm may easily reach a fast speed, but a certain periodicity makes them difficult to meet the aforementioned demand of information security. Utilizing physical stochastic phenomena can provide reliable random numbers, called physical random number generators (RNGs). However, limited by the bandwidth of the conventional physical sources such as electronic noise, frequency jitter of oscillator and quantum randomness, the traditional physical RNG has a generation speed at a level of Mb/s typically. Therefore, real-time and ultrafast physical random number generation is urgently required from the view of absolute security for high-speed communication today. With the advent of wideband photonic entropy sources, in recent years lots of schemes for high-speed random number generation are proposed. Among them, chaotic laser has received great attention due to its ultra-wide bandwidth and large random fluctuation of intensity. The real-time speed of physical RNG based on chaotic laser is now limited under 5 Gb/s, although the reported RNG claims that an ultrafast speed of Tb/s is possible in theory. The main issues that restrict the real-time speed of RNG based on chaotic laser are from two aspects. The first aspect is electrical jitter bottleneck confronted by the electrical analog-to-digital converter (ADC). Specifically, most of the methods of extracting random numbers are first to convert the chaotic laser into an electrical signal by a photo-detector, then use an electrical ADC driven by radio frequency (RF) clock to sample and quantify the chaotic signal in electronic domain. Unfortunately, the response rate of ADC is below Gb/s restricted by the aperture jitter (several picoseconds) of RF clock in the sample and hold circuit. The second aspect comes from the complex post-processes, which are fundamental in current RNG techniques to realize a good randomness. The strict synchronization among post-processing components (e.g., XOR gates, memory buffers, high-order difference) is controlled by an RF clock. Similarly, it is also an insurmountable obstacle to achieve an accurate synchronization due to the electronic jitter of the RF clock. In this paper, we propose a method of ultrafast multi-bit physical RNG based on chaotic laser without any post-process. In this method, a train of optical pulses generated by a GHz mode-locked laser with low temporal jitter at a level of fs is used as an optical sampling clock. The chaotic laser is sampled in the optical domain through a low switching energy and high-linearity terahertz optical asymmetric demultiplexer (TOAD) sampler, which is a fiber loop with an asymmetrical nonlinear semiconductor optical amplifier. Then, the peak amplitude of each sampled chaotic pulse is digitized by a multi-bit comparator (i.e., a multi-bit ADC without sample and hold circuit) and converted into random numbers directly. Specifically, a proof-of-principle experiment is executed to demonstrate the aforementioned proposed method. In this experiment, an optical feedback chaotic laser is used, which has a bandwidth of 6 GHz. Through setting a sampling rate to be 5 GSa/s and selecting 4 LSBs outputs of the 8-bit comparator, 20 Gb/s (=5 GSa/s4 LSBs) physical random number sequences are obtained. Considering the ultrafast response rate of TOAD sampler, the speed of random numbers generated by this method has the potential to reach several hundreds of Gb/s as long as the used chaotic laser has a sufficient bandwidth.
      通信作者: 王云才, wangyc@tyut.edu.cn
    • 基金项目: 国家自然科学基金科学仪器基础研究专款(批准号:61227016)、国家自然科学基金青年科学基金(批准号:61405138,61505137,51404165)、国家国际科技合作专项(批准号:2014DFA50870)、山西省自然科学基金(批准号:2015021088)和山西省高等学校科技创新项目(批准号:2015122)资助的课题.
      Corresponding author: Wang Yun-Cai, wangyc@tyut.edu.cn
    • Funds: Project supported by the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China (Grant No. 61227016), the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61405138, 61505137, 51404165), the Funds for International Cooperation and Exchange of the National Science Foundation of China (Grant No. 2014DFA50870), the Natural Science Foundation of Shanxi Province, China (Grant No. 2015021088), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province, China (Grant No. 2015122).
    [1]

    Shannon C E 1949 Bell Syst. Tech. J. 28 656

    [2]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47 615

    [3]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Comput. 52 403

    [4]

    Wang L, Ma H Q, Li S, Wei K J 2013 Acta Phys. Sin. 62 100303 (in Chinese)[汪龙, 马海强, 李申, 韦克金2013 62 100303]

    [5]

    Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633

    [6]

    Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 030003 (in Chinese)[赵清春, 殷洪玺2013激光与光电子学进展50 030003]

    [7]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese)[杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼2015 64 084204]

    [8]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [9]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [10]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [11]

    Li X Z, Chan S C 2012 Opt. Lett. 37 2163

    [12]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2011 Opt. Lett. 36 4632

    [13]

    Nguimdo R M, Verschaffelt G, Danckaert J, Leijten X, Bolk J, Sande G V D 2012 Opt. Express 20 28603

    [14]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese)[唐曦, 吴加贵, 夏光琼, 吴正茂2011 60 110509]

    [15]

    Tang X, Wu Z M, Wu J G, Deng T, Chen J J, Fan L, Zhong Z Q, Xia G Q 2015 Opt. Express 23 33130

    [16]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [17]

    Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360

    [18]

    Zhang J Z, Wang Y C, Liu M, Xue L G, Li P, Wang A B, Zhang M J 2012 Opt. Express 20 7496

    [19]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [20]

    Duguay M A, Hansen J W 1968 Appl. Phys. Lett. 13 178

    [21]

    Takara H, Kawanishi S, Yokoo A, Yokoo A, Tomaru S 1996 Electron. Lett. 32 2256

    [22]

    Nogiwa S, Kawaguchi Y, Ohta H, Endo Y 2000 Electron. Lett. 36 1727

    [23]

    Westlund M, Andrekson P A, Sunnerud H, Hansryd J, Li J 2005 J. Lightwave Technol. 23 2012

    [24]

    Wang W R, Yu J L, Luo J, Han B C, Wu B, Guo J Z, Wang J, Yang E Z 2011 Acta Phys. Sin. 60 104220 (in Chinese)[王文睿, 于晋龙, 罗俊, 韩丙辰, 吴波, 郭精忠, 王菊, 杨恩泽2011 60 104220]

    [25]

    Zhang S J, Zhang Y L, Liu S, Li H P, Liu Y 2012 Proc. SPIE 8552 85520B

    [26]

    Deng K L, Runser R J, Glesk I, Prucnal P R 1998 IEEE Photon. Technol. Lett. 10 397

    [27]

    Li P, Jiang L, Zhang J G, Zhang J Z 2015 IEEE Photon. J. 7 1

    [28]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [29]

    Ding L, Wu J G, Xia G Q, Shen J T, Li N Y, Wu Z M 2011 Acta Phys. Sin. 60 014210 (in Chinese)[丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂2011 60 014210]

    [30]

    Xiang S, Pan W, Zhang L, Wen A, Shang L, Zhang H, Lin L 2014 Opt. Commun. 324 38

    [31]

    Wu Y, Wang B J, Zhang J Z, Wang A B, Wang Y C 2013 Math. Probl. Eng. 2013 571393

    [32]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [33]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008

  • [1]

    Shannon C E 1949 Bell Syst. Tech. J. 28 656

    [2]

    Petrie C S, Connelly J A 2000 IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 47 615

    [3]

    Bucci M, Germani L, Luzzi R, Trifiletti A, Varanonuovo M 2003 IEEE Trans. Comput. 52 403

    [4]

    Wang L, Ma H Q, Li S, Wei K J 2013 Acta Phys. Sin. 62 100303 (in Chinese)[汪龙, 马海强, 李申, 韦克金2013 62 100303]

    [5]

    Wang A B, Wang Y C, He H C 2008 IEEE Photon. Technol. Lett. 20 1633

    [6]

    Zhao Q C, Yin H X 2013 Laser Optoelectron. Prog. 50 030003 (in Chinese)[赵清春, 殷洪玺2013激光与光电子学进展50 030003]

    [7]

    Yang H B, Wu Z M, Tang X, Wu J G, Xia G Q 2015 Acta Phys. Sin. 64 084204 (in Chinese)[杨海波, 吴正茂, 唐曦, 吴加贵, 夏光琼2015 64 084204]

    [8]

    Uchida A, Amano K, Inoue M, Hirano K, Naito S, Someya H, Oowada I, Kurashige T, Shiki M, Yoshimori S, Yoshimura K, Davis P 2008 Nat. Photon. 2 728

    [9]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2010 Nat. Photon. 4 58

    [10]

    Argyris A, Deligiannidis S, Pikasis E, Bogris A, Syvridis D 2010 Opt. Express 18 18763

    [11]

    Li X Z, Chan S C 2012 Opt. Lett. 37 2163

    [12]

    Oliver N, Soriano M C, Sukow D W, Fischer I 2011 Opt. Lett. 36 4632

    [13]

    Nguimdo R M, Verschaffelt G, Danckaert J, Leijten X, Bolk J, Sande G V D 2012 Opt. Express 20 28603

    [14]

    Tang X, Wu J G, Xia G Q, Wu Z M 2011 Acta Phys. Sin. 60 110509 (in Chinese)[唐曦, 吴加贵, 夏光琼, 吴正茂2011 60 110509]

    [15]

    Tang X, Wu Z M, Wu J G, Deng T, Chen J J, Fan L, Zhong Z Q, Xia G Q 2015 Opt. Express 23 33130

    [16]

    Li N Q, Kim B, Chizhevsky V N, Locquet A, Bloch M, Citrin D S, Pan W 2014 Opt. Express 22 6634

    [17]

    Li P, Wang Y C, Zhang J Z 2010 Opt. Express 18 20360

    [18]

    Zhang J Z, Wang Y C, Liu M, Xue L G, Li P, Wang A B, Zhang M J 2012 Opt. Express 20 7496

    [19]

    Wang A B, Li P, Zhang J G, Zhang J Z, Li L, Wang Y C 2013 Opt. Express 21 20452

    [20]

    Duguay M A, Hansen J W 1968 Appl. Phys. Lett. 13 178

    [21]

    Takara H, Kawanishi S, Yokoo A, Yokoo A, Tomaru S 1996 Electron. Lett. 32 2256

    [22]

    Nogiwa S, Kawaguchi Y, Ohta H, Endo Y 2000 Electron. Lett. 36 1727

    [23]

    Westlund M, Andrekson P A, Sunnerud H, Hansryd J, Li J 2005 J. Lightwave Technol. 23 2012

    [24]

    Wang W R, Yu J L, Luo J, Han B C, Wu B, Guo J Z, Wang J, Yang E Z 2011 Acta Phys. Sin. 60 104220 (in Chinese)[王文睿, 于晋龙, 罗俊, 韩丙辰, 吴波, 郭精忠, 王菊, 杨恩泽2011 60 104220]

    [25]

    Zhang S J, Zhang Y L, Liu S, Li H P, Liu Y 2012 Proc. SPIE 8552 85520B

    [26]

    Deng K L, Runser R J, Glesk I, Prucnal P R 1998 IEEE Photon. Technol. Lett. 10 397

    [27]

    Li P, Jiang L, Zhang J G, Zhang J Z 2015 IEEE Photon. J. 7 1

    [28]

    Lin F Y, Liu J M 2003 Opt. Commun. 221 173

    [29]

    Ding L, Wu J G, Xia G Q, Shen J T, Li N Y, Wu Z M 2011 Acta Phys. Sin. 60 014210 (in Chinese)[丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂2011 60 014210]

    [30]

    Xiang S, Pan W, Zhang L, Wen A, Shang L, Zhang H, Lin L 2014 Opt. Commun. 324 38

    [31]

    Wu Y, Wang B J, Zhang J Z, Wang A B, Wang Y C 2013 Math. Probl. Eng. 2013 571393

    [32]

    Uchida A, Heil T, Liu Y, Davis P, Aida T 2003 IEEE J. Quantum Electron. 39 1462

    [33]

    Zhang M J, Liu T G, Wang A B, Zheng J Y, Meng L N, Zhang Z X, Wang Y C 2011 Opt. Lett. 36 1008

  • [1] 王永博, 唐曦, 赵乐涵, 张鑫, 邓进, 吴正茂, 杨俊波, 周恒, 吴加贵, 夏光琼. 基于Si3N4微环混沌光频梳的Tbit/s并行实时物理随机数方案.  , 2024, 73(8): 084203. doi: 10.7498/aps.73.20231913
    [2] 吴佳辰, 宋峥, 谢溢锋, 周心雨, 周沛, 穆鹏华, 李念强. 基于激光器阵列后处理的混沌熵源获取高品质随机数.  , 2021, 70(10): 104205. doi: 10.7498/aps.70.20202034
    [3] 姚晓洁, 唐曦, 吴正茂, 夏光琼. 基于两正交互耦1550 nm垂直腔面发射激光器获取多路随机数.  , 2018, 67(2): 024204. doi: 10.7498/aps.67.20171902
    [4] 王龙生, 赵彤, 王大铭, 吴旦昱, 周磊, 武锦, 刘新宇, 王安帮. 利用混沌激光多位量化实时产生14 Gb/s的物理随机数.  , 2017, 66(23): 234205. doi: 10.7498/aps.66.234205
    [5] 赵东亮, 李璞, 刘香莲, 郭晓敏, 郭龑强, 张建国, 王云才. 利用混沌激光脉冲在线实时产生7 Gbit/s物理随机数.  , 2017, 66(5): 050501. doi: 10.7498/aps.66.050501
    [6] 江镭, 李璞, 张建忠, 孙媛媛, 胡兵, 王云才. 基于太赫兹光非对称解复用器结构的低开关能量、高线性度全光采样门实验研究.  , 2015, 64(15): 154213. doi: 10.7498/aps.64.154213
    [7] 李雄杰, 周东华. 一种基于强跟踪滤波的混沌保密通信方法.  , 2015, 64(14): 140501. doi: 10.7498/aps.64.140501
    [8] 彭汉, 刘彬, 付松年, 张敏明, 刘德明. 高速线性光采样用被动锁模光纤激光器重复频率优化.  , 2015, 64(13): 134206. doi: 10.7498/aps.64.134206
    [9] 李璞, 江镭, 孙媛媛, 张建国, 王云才. 面向全光物理随机数发生器的混沌实时光采样研究.  , 2015, 64(23): 230502. doi: 10.7498/aps.64.230502
    [10] 萧宝瑾, 侯佳音, 张建忠, 薛路刚, 王云才. 混沌半导体激光器的弛豫振荡频率对随机序列速率的影响.  , 2012, 61(15): 150502. doi: 10.7498/aps.61.150502
    [11] 唐曦, 吴加贵, 夏光琼, 吴正茂. 基于互注入半导体激光器的混沌输出产生17.5 Gbit/s随机码.  , 2011, 60(11): 110509. doi: 10.7498/aps.60.110509
    [12] 陈莎莎, 张建忠, 杨玲珍, 梁君生, 王云才. 基于混沌激光产生1 Gbit/s的随机数.  , 2011, 60(1): 010501. doi: 10.7498/aps.60.010501
    [13] 闵富红, 王恩荣. 超混沌Qi系统的错位投影同步及其在保密通信中的应用.  , 2010, 59(11): 7657-7662. doi: 10.7498/aps.59.7657
    [14] 颜森林. 光纤混沌双芯双向保密通信系统研究.  , 2008, 57(5): 2819-2826. doi: 10.7498/aps.57.2819
    [15] 张 勇, 陈天麒, 陈 滨. 跃变参数混沌同步及其应用.  , 2007, 56(1): 56-66. doi: 10.7498/aps.56.56
    [16] 桑新柱, 余重秀, 王葵如. 波长可调谐混沌产生和同步的实验研究.  , 2006, 55(11): 5728-5732. doi: 10.7498/aps.55.5728
    [17] 孙 琳, 姜德平. 驱动函数切换调制实现超混沌数字保密通信.  , 2006, 55(7): 3283-3288. doi: 10.7498/aps.55.3283
    [18] 于灵慧, 房建成. 混沌神经网络逆控制的同步及其在保密通信系统中的应用.  , 2005, 54(9): 4012-4018. doi: 10.7498/aps.54.4012
    [19] 李建芬, 李 农, 林 辉. 适合传输快变信息信号的混沌调制保密通信.  , 2004, 53(6): 1694-1698. doi: 10.7498/aps.53.1694
    [20] 张家树, 肖先赐. 基于广义混沌映射切换的混沌同步保密通信.  , 2001, 50(11): 2121-2125. doi: 10.7498/aps.50.2121
计量
  • 文章访问数:  6196
  • PDF下载量:  341
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-12
  • 修回日期:  2016-10-13
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map