搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

复杂噪声场下对角减载技术的原理及应用

夏麾军 马远良 刘亚雄

引用本文:
Citation:

复杂噪声场下对角减载技术的原理及应用

夏麾军, 马远良, 刘亚雄

Principle and application of diagonal reducing method in the complex noise fields

Xia Hui-Jun, Ma Yuan-Liang, Liu Ya-Xiong
PDF
导出引用
  • 实际水下噪声场是非常复杂的,它具有一定的相关性,且各阵元接收到的噪声的功率不相等,因此归一化的噪声协方差矩阵不是单位矩阵,会使得一些阵列信号处理算法的性能下降.针对这个问题,本文充分分析了复杂噪声场的物理特性,建立了噪声协方差矩阵的物理模型,提出了一种复杂噪声场下的协方差矩阵对角减载技术.首先将数据协方差矩阵减去一个减载系数矩阵,在使得波束输出信噪比达到最大的约束条件下,获得了减载系数矩阵的理论表达式和近似表达式.然后利用最小二乘方法,估计减载系数矩阵,并且理论分析了噪声场的相关性及输入信噪比对估计误差的影响.仿真实验和湖试数据处理结果表明,在复杂噪声场条件下,该算法提高了输出信噪比,改善了阵列信号处理算法的性能,并且该算法计算复杂度低,可以实时处理.
    Acoustic environment has low signal-to-noise ratio(SNR); hence, array signal processing is always used for reducing noise and enhancing signal. Because the delay-and-sum beam forming method is robust, so it is almost widely used, but the array gain is limited by the array aperture. The actual underwater ambient noise is complex, which includes uncorrelated noise and correlated noise. The noise powers of array elements are unequal to each other. The noise covariance matrix is not a scaled identity matrix. Consequently, the performance of array signal processing method decreases obviously. Aiming at these two problems, a diagonal reducing method of the covariance matrix in the complex noise field is proposed. Firstly, a reducing matrix, which is defined as a diagonal matrix with unequal diagonal elements, is subtracted from the covariance matrix so as to reduce the noise, and a new matrix is obtained. Secondly, the delay-and-sum beamforming is done by using the new matrix to obtain the beaming output. The analytic solution and approximate solution of reducing matrix are obtained under the constraint condition that the output SNR attains its maximum. Thirdly, the estimation of the reducing matrix is determined by minimizing the function that is defined as the error between the covariance matrix and the estimated covariance matrix. This minimization problem is accomplished in an iterative method. Fourthly, if the noise is uniform white noise or the nonuniform white noise, this proposed method performs well. While, under the complex noise field the performance of the proposed method may be deteriorated. So the effects of the correlation of the noise field and the input SNR on the estimated error are analyzed. In fact, the weaker the correlation is, or the larger the input SNR is, the smaller the estimated error is. Lastly, the simulation experiment and the lake trial are implemented. The simulation results show that the diagonal reducing method of the covariance matrix reduces some ambient noises, the noise output power decreases, the output SNR increases, and the proposed method improves the performance of array signal processing. The experimental results show that the output SNR of the target by using the proposed method is increased by about 14 dB. The diagonal reducing method of covariance matrix has definite value for engineering application, and is computationally attractive.
      通信作者: 马远良, ylma@nwpu.edu.cn
      Corresponding author: Ma Yuan-Liang, ylma@nwpu.edu.cn
    [1]

    Fishler E, Poor H V 2005 IEEE Trans. Signal Process. 53 3543

    [2]

    Wu Y, Hou C, Liao G, Guo Q 2006 IEEE J. Ocean. Eng. 31 504

    [3]

    Madurasinghe D 2005 IEEE Signal Process. Lett. 12 337

    [4]

    Li M H, Lu Y L 2008 IEEE Trans. Aerosp. Electron. Syst. 44 1079

    [5]

    Prasad S, Williams R T, Mahalanabis A K, Sibul L H 1988 IEEE Trans. on ASSP 36 631

    [6]

    Moghaddamjoo A 1991 IEEE Trans. Signal Process. 39 219

    [7]

    Liao B, Chan S C, Huang L, Guo C T 2005 IEEE Trans. Signal Process. 53 34

    [8]

    Chen C E, Lorenzelli F, Hudson R E, Yao K 2008 IEEE Trans. Signal Process. 56 3038

    [9]

    Van T H L 2002 Optimum Array Processing:Part IV of Detection, Estimation, and Modulation Theory(New York:Wiley) pp428-429

    [10]

    Reddy V V, Boon P N, Khong A W H 2013 IEEE Trans. Signal Process. 61 2551

    [11]

    Roy R, Kailath T 2016 Acta Phys. Sin. 65 144302 (in Chinese)[夏麾军, 马远良, 刘亚雄2016 65 144302]

    [12]

    Emanuël A P H, Sharon G 2007 J. Acoust. Soc. Am. 122 3464

    [13]

    Robert P D 2004 Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference Manchester, England, May 10-12, 2004 p1

    [14]

    Zhao A B, Zhou B, Song X J, Bi X J 2014 J. Harbin. Eng. Univ. 35 1327 (in Chinese)[赵安邦, 周彬, 宋雪晶, 毕雪洁2014哈尔滨工程大学学报35 1327]

    [15]

    Petersen K B, Pederse M S 2012 The Matrix Cookbook(Denmark Tech. Univ. of Denmark) pp8-14

  • [1]

    Fishler E, Poor H V 2005 IEEE Trans. Signal Process. 53 3543

    [2]

    Wu Y, Hou C, Liao G, Guo Q 2006 IEEE J. Ocean. Eng. 31 504

    [3]

    Madurasinghe D 2005 IEEE Signal Process. Lett. 12 337

    [4]

    Li M H, Lu Y L 2008 IEEE Trans. Aerosp. Electron. Syst. 44 1079

    [5]

    Prasad S, Williams R T, Mahalanabis A K, Sibul L H 1988 IEEE Trans. on ASSP 36 631

    [6]

    Moghaddamjoo A 1991 IEEE Trans. Signal Process. 39 219

    [7]

    Liao B, Chan S C, Huang L, Guo C T 2005 IEEE Trans. Signal Process. 53 34

    [8]

    Chen C E, Lorenzelli F, Hudson R E, Yao K 2008 IEEE Trans. Signal Process. 56 3038

    [9]

    Van T H L 2002 Optimum Array Processing:Part IV of Detection, Estimation, and Modulation Theory(New York:Wiley) pp428-429

    [10]

    Reddy V V, Boon P N, Khong A W H 2013 IEEE Trans. Signal Process. 61 2551

    [11]

    Roy R, Kailath T 2016 Acta Phys. Sin. 65 144302 (in Chinese)[夏麾军, 马远良, 刘亚雄2016 65 144302]

    [12]

    Emanuël A P H, Sharon G 2007 J. Acoust. Soc. Am. 122 3464

    [13]

    Robert P D 2004 Proceedings of the 10th AIAA/CEAS Aeroacoustics Conference Manchester, England, May 10-12, 2004 p1

    [14]

    Zhao A B, Zhou B, Song X J, Bi X J 2014 J. Harbin. Eng. Univ. 35 1327 (in Chinese)[赵安邦, 周彬, 宋雪晶, 毕雪洁2014哈尔滨工程大学学报35 1327]

    [15]

    Petersen K B, Pederse M S 2012 The Matrix Cookbook(Denmark Tech. Univ. of Denmark) pp8-14

  • [1] 梁可达, 刘滕飞, 常哲, 张猛, 李志鑫, 黄松松, 王晶. 基于最小二乘法和支持向量机的海洋内孤立波传播速度反演模型.  , 2023, 72(2): 028301. doi: 10.7498/aps.72.20221633
    [2] 谢磊, 孙超, 刘雄厚, 蒋光禹. 陆架斜坡海域声场特性对常规波束形成阵增益的影响.  , 2016, 65(14): 144303. doi: 10.7498/aps.65.144303
    [3] 夏麾军, 马远良, 刘亚雄. 海洋环境噪声场对称性分析及噪声消除方法.  , 2016, 65(14): 144302. doi: 10.7498/aps.65.144302
    [4] 徐灵基, 杨益新, 杨龙. 水下线谱噪声源识别的波束域时频分析方法研究.  , 2015, 64(17): 174304. doi: 10.7498/aps.64.174304
    [5] 郭业才, 张宁, 吴礼福, 孙心宇. 基于自适应加权约束最小二乘法的麦克风阵列稳健频率不变波束形成算法.  , 2015, 64(17): 174303. doi: 10.7498/aps.64.174303
    [6] 王燕, 吴文峰, 范展, 梁国龙. 基于半定规划和秩-1分解的稳健波束形成.  , 2013, 62(18): 184302. doi: 10.7498/aps.62.184302
    [7] 张旭, 姚明印, 刘木华. 激光诱导击穿光谱结合偏最小二乘法定量分析脐橙中Cd含量.  , 2013, 62(4): 044211. doi: 10.7498/aps.62.044211
    [8] 郝广辉, 常本康, 陈鑫龙, 王晓晖, 赵静, 徐源, 金睦淳. 近紫外波段NEA GaN阴极响应特性的研究.  , 2013, 62(9): 097901. doi: 10.7498/aps.62.097901
    [9] 杨殿阁, 李兵, 王子腾, 连小珉. 运动声源识别的动态波叠加方法研究.  , 2012, 61(5): 054306. doi: 10.7498/aps.61.054306
    [10] 张勇, 关伟. 基于最大Lyapunov指数的多变量混沌时间序列预测.  , 2009, 58(2): 756-763. doi: 10.7498/aps.58.756
    [11] 刘福才, 张彦柳, 陈 超. 基于鲁棒模糊聚类的混沌时间序列预测.  , 2008, 57(5): 2784-2790. doi: 10.7498/aps.57.2784
    [12] 钦 佩, 娄豫皖, 杨传铮, 夏保佳. 分离X射线衍射线多重宽化效应的新方法和计算程序.  , 2006, 55(3): 1325-1335. doi: 10.7498/aps.55.1325
    [13] 刘 涵, 刘 丁, 任海鹏. 基于最小二乘支持向量机的混沌控制.  , 2005, 54(9): 4019-4025. doi: 10.7498/aps.54.4019
    [14] 张立新, 钱维宏, 高新全, 丑纪范. 协调多时次差分格式及其稳定性.  , 2005, 54(7): 3465-3472. doi: 10.7498/aps.54.3465
    [15] 崔万照, 朱长纯, 保文星, 刘君华. 基于模糊模型支持向量机的混沌时间序列预测.  , 2005, 54(7): 3009-3018. doi: 10.7498/aps.54.3009
    [16] 冯文强, 诸跃进. 外噪声场对二元混合物相分离的驱动作用.  , 2004, 53(11): 3690-3694. doi: 10.7498/aps.53.3690
    [17] 崔万照, 朱长纯, 保文星, 刘君华. 混沌时间序列的支持向量机预测.  , 2004, 53(10): 3303-3310. doi: 10.7498/aps.53.3303
    [18] 周斌, 刘文清, 齐峰, 李振壁, 崔延军. 差分吸收光谱法测量大气污染的浓度反演方法研究.  , 2001, 50(9): 1818-1823. doi: 10.7498/aps.50.1818
    [19] 郭常霖, 黄月鸿. 无标样X射线定量分析最小二乘法方程的稳定解.  , 1993, 42(7): 1106-1111. doi: 10.7498/aps.42.1106
    [20] 王廷俊, 程虎. 104型电子计算机上的晶体结构分析标准程序系统——Ⅲ.最小二乘法修正结构参数.  , 1965, 21(2): 317-323. doi: 10.7498/aps.21.317
计量
  • 文章访问数:  5276
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-05
  • 修回日期:  2016-10-09
  • 刊出日期:  2017-01-05

/

返回文章
返回
Baidu
map