搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光抽运太赫兹探测技术研究ZnSe的光致载流子动力学特性

李高芳 马国宏 马红 初凤红 崔昊杨 刘伟景 宋小军 江友华 黄志明 褚君浩

引用本文:
Citation:

光抽运太赫兹探测技术研究ZnSe的光致载流子动力学特性

李高芳, 马国宏, 马红, 初凤红, 崔昊杨, 刘伟景, 宋小军, 江友华, 黄志明, 褚君浩

Photocarrier dynamics in zinc selenide studied with optical-pump terahertz-probe spectroscopy

Li Gao-Fang, Ma Guo-Hong, Ma Hong, Chu Feng-Hong, Cui Hao-Yang, Liu Wei-Jing, Song Xiao-Jun, Jiang You-Hua, Huang Zhi-Ming, Chu Jun-Hao
PDF
导出引用
  • 利用光抽运-太赫兹探测技术,研究了ZnSe的载流子弛豫过程和太赫兹波段电导率的时间演化过程.在中心波长为400 nm的抽运光作用下,ZnSe的载流子弛豫过程用双指数函数进行了很好的拟合,其快的载流子弛豫时间和慢的载流子弛豫时间均随抽运光密度的增加而增大.快的载流子弛豫时间随抽运光密度的增加而增大与样品中的缺陷有关,随着激发光密度的增加,激发的光生载流子浓度增大,缺陷逐渐被光生载流子填满,致使快的载流子弛豫时间增大;慢的载流子弛豫时间随着抽运光密度增加而增大主要和带填充有关.不同抽运光延迟时间下ZnSe在太赫兹波段的瞬态电导率用Drude-Smith模型进行了很好的拟合.对ZnSe光致载流子动力学特性的研究为高速光电器件的设计和制造提供了重要的实验依据.
    Optical pump-terahertz (THz) probe spectroscopy is employed to investigate the photo-excited carrier relaxation process and the evolution of terahertz conductivity in ZnSe.With the pump pulse at a wavelength of 400 nm,the carrier relaxation process can be well fitted to a biexponential function.We find that the recombination process in ZnSe occurs through two components,one is the fast carrier recombination process,and the other is the slow recombination process.The fast carrier relaxation time constant is in a range from a few tens of picoseconds to hundreds of picoseconds, and slow carrier relaxation time constant ranges from one to several nanoseconds.We find that both the fast and the slow carrier relaxation time constant increase with the power density of pump beam increasing,which is related to the density of defects in the sample.Upon increasing the excitation power density,the defects are filled by the increased photo-excited carriers,which leads to an increase in the fast carrier relaxation time.While,the slow carrier relaxation time increasing with pump flux can be attributed to the filling of surface state.We also present the THz complex conductivity spectra of ZnSe at different delay times with a pump flux of 240 J/cm2.It is shown that the real part of the conductivity decreases with increasing the pump-probe delay time.The real part of the conductivity is positive and increases with frequency in each of the selective three delay times (2,20,and 100 ps),while the imaginary part is negative and decreases with frequency.The transient conductivity spectra at terahertz frequency in different delay times are fitted with Drude-Smith model.According to the fitting results from Drude-Smith model,with the pump-probe delay time increasing,the average collision time and the value of c1 decrease.Generally,a higher carrier density leads to a more frequent carrier-carrier collision,which means that the collision time should decrease with carrier density increasing. The abnormal carrier density dependence of collision time implies a predominance of backscattering in our ZnSe.The predominance of backscattering is also observed for the negative value of c1.The negative value of c1 indicates that some photocarriers are backscattered in ZnSe.With a delay time of 2 ps,the value of c1 approaches to -1,which indicates that the direct current (DC) conductivity is suppressed,and the maximum conductivity shifts toward higher frequency. With increasing the delay time,the value of c1 decreases:in this case DC conductivity dominates the spectrum.The study of the dynamics of photoinduced carriers in ZnSe provides an important experimental basis for designing and manufacturing the high speed optoelectronic devices.
      通信作者: 李高芳, li_gaofang@163.com
    • 基金项目: 国家自然科学基金(批准号:11404207,11674213)、上海市自然科学基金(批准号:14ZR1417500)、上海市科委地方院校能力建设项目(批准号:15110500900,14110500900)、上海市教委科研创新项目(批准号:15ZZ086)、上海市教委高校青年教师培养资助项目(批准号:ZZsdl15106)和上海电力学院人才引进基金(批准号:K2014-028)资助的课题.
      Corresponding author: Li Gao-Fang, li_gaofang@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404207, 11674213), the Shanghai Natural Science Foundation, China (Grant No. 14ZR1417500), the Local Colleges and Universities Capacity Building Program of the Shanghai Science and Technology Committee, China (Grant Nos. 15110500900, 14110500900), the Innovation Program of Shanghai Municipal Education Commission, China (Grant No. 15ZZ086), the Colleges and Universities Young Teachers Training Funding Program of Shanghai Municipal Education Commission, China (Grant No. ZZsdl15106), and the Shanghai University of Electric Power Scientific Research Fund, China (Grant No. K2014-028).
    [1]

    Shah J 1996 Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (New York:Springer) p132

    [2]

    Othonos A 1998 J. Appl. Phys. 83 1789

    [3]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [4]

    Li M, Wu B, Ekahana S A, Utama M I B, Xing G, Xiong Q, Sum T C, Zhang X 2012 Appl. Phys. Lett. 101 091104

    [5]

    Parkinson P, Dodson C, Joyce H J, Bertness K A, Sanford N A, Herz L M, Johnston B M 2012 Nano Lett. 12 4600

    [6]

    Li G, Xue X, Lin X, Yuan S, Tang N, Chu F, Cui H, Ma G 2014 Appl. Phys. A 116 45

    [7]

    Dakovski G L, Kubera B, Lan S, Shan J 2006 J. Opt. Soc. Am. B 23 139

    [8]

    Liu H, Lu J, Hao F T, Li D, Feng Y P, Tang S H, Chorng H S, Zhang X 2012 J. Phys. Chem. C 116 26036

    [9]

    Larsen C, Cooke G D, Jepsen P U 2011 J. Opt. Soc. Am. B 28 1308

    [10]

    Park H, Kim W R, Jeong H T, Lee J J, Kim H G, Choi W Y 2011 Sol. Energ. Mat. Sol. C 95 184

    [11]

    Liu H, Lu J, Zheng M, Chorng H S 2013 Nano Res. 6 808

    [12]

    Xue X, Jiang M, Li G, Lin X, Ma G, Jin P 2013 J. Appl. Phys. 114 193506

    [13]

    Tsokkou D, Othonos A, Zervos M 2012 Appl. Phys. Lett. 100 133101

    [14]

    Haripadmam P C, John H, Philip R, Gopinath P 2014 Appl. Phys. Lett. 105 221102

    [15]

    Kong D G, Ao G H, Gao Y C, Chang Q, Wu W Z, Ran L L, Ye H 2012 Physica B 407 4251

    [16]

    Yao G X, L L H, Gui M F, Zhang X Y, Zheng X F, Ji X H, Zhang H, Cui Z F 2012 Chin. Phys. B 21 107801

    [17]

    Ku S A, Tu C M, Chu W C, Luo C W, Wu K H, Yabushita A, Chi C C, Kobayashi T 2013 Opt. Express 21 13930

    [18]

    L Z, Zhang D, Zhou Z, Sun L, Zhao Z, Yuan J 2012 Appl. Opt. 51 676

    [19]

    Ropagnol X, Morandotti R, Ozaki T, Reid M 2011 IEEE Photon. J. 3 174

    [20]

    He S, Chen X, Wu X, Wang G, Zhao F J 2008 J. Lightwave Technol. 26 1519

    [21]

    Xu X L, Wang X M, Li F L, Zhang X C, Wang L 2004 Spectrosc. Spect. Anal. 24 1153[徐新龙, 王秀敏, 李福利, 张希成, 汪力2004光谱学与光谱分析 24 1153]

    [22]

    Han J G, Abul K A, Zhang W L J 2007 J. Nanoelectron. Optoelectron. 2 222

    [23]

    Zhang X C, Jin Y, Ma X F 1992 Appl. Phys. Lett. 61 2764

    [24]

    Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523

    [25]

    Sosnowski T S, Norris T B, Wang H H, Grenier P, Whitaker J F, Sung C Y 1997 Appl. Phys. Lett. 70 3245

    [26]

    Joseph S M, Prashant V K 2014 Nat. Photon. 8 737

    [27]

    Price M B, Butkus J, Jellicoe T C, Sadhanala A, Briane A, Halpert J E, Bronch K, Hodgkiss M J, Friend H R, Deschler F 2015 Nat. Commun. 6 8420

    [28]

    Hegmann F A, Ostroverkhova O, Cooke D G 2006 Photophysics of Molecular Materials (Weinheim:Wiley-VCH Press) p367

    [29]

    Palik 1998 Handbook of Optical Constants of Solids (Vol. 2) (Chestnut Hill:Academic Press) p752

    [30]

    Titova V L, Cocker L T, Cooke G D, Wang X Y, Meldrum A, Hegmann A F 2011 Phys. Rev. B 83 085403

  • [1]

    Shah J 1996 Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures (New York:Springer) p132

    [2]

    Othonos A 1998 J. Appl. Phys. 83 1789

    [3]

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M 2011 Rev. Mod. Phys. 83 543

    [4]

    Li M, Wu B, Ekahana S A, Utama M I B, Xing G, Xiong Q, Sum T C, Zhang X 2012 Appl. Phys. Lett. 101 091104

    [5]

    Parkinson P, Dodson C, Joyce H J, Bertness K A, Sanford N A, Herz L M, Johnston B M 2012 Nano Lett. 12 4600

    [6]

    Li G, Xue X, Lin X, Yuan S, Tang N, Chu F, Cui H, Ma G 2014 Appl. Phys. A 116 45

    [7]

    Dakovski G L, Kubera B, Lan S, Shan J 2006 J. Opt. Soc. Am. B 23 139

    [8]

    Liu H, Lu J, Hao F T, Li D, Feng Y P, Tang S H, Chorng H S, Zhang X 2012 J. Phys. Chem. C 116 26036

    [9]

    Larsen C, Cooke G D, Jepsen P U 2011 J. Opt. Soc. Am. B 28 1308

    [10]

    Park H, Kim W R, Jeong H T, Lee J J, Kim H G, Choi W Y 2011 Sol. Energ. Mat. Sol. C 95 184

    [11]

    Liu H, Lu J, Zheng M, Chorng H S 2013 Nano Res. 6 808

    [12]

    Xue X, Jiang M, Li G, Lin X, Ma G, Jin P 2013 J. Appl. Phys. 114 193506

    [13]

    Tsokkou D, Othonos A, Zervos M 2012 Appl. Phys. Lett. 100 133101

    [14]

    Haripadmam P C, John H, Philip R, Gopinath P 2014 Appl. Phys. Lett. 105 221102

    [15]

    Kong D G, Ao G H, Gao Y C, Chang Q, Wu W Z, Ran L L, Ye H 2012 Physica B 407 4251

    [16]

    Yao G X, L L H, Gui M F, Zhang X Y, Zheng X F, Ji X H, Zhang H, Cui Z F 2012 Chin. Phys. B 21 107801

    [17]

    Ku S A, Tu C M, Chu W C, Luo C W, Wu K H, Yabushita A, Chi C C, Kobayashi T 2013 Opt. Express 21 13930

    [18]

    L Z, Zhang D, Zhou Z, Sun L, Zhao Z, Yuan J 2012 Appl. Opt. 51 676

    [19]

    Ropagnol X, Morandotti R, Ozaki T, Reid M 2011 IEEE Photon. J. 3 174

    [20]

    He S, Chen X, Wu X, Wang G, Zhao F J 2008 J. Lightwave Technol. 26 1519

    [21]

    Xu X L, Wang X M, Li F L, Zhang X C, Wang L 2004 Spectrosc. Spect. Anal. 24 1153[徐新龙, 王秀敏, 李福利, 张希成, 汪力2004光谱学与光谱分析 24 1153]

    [22]

    Han J G, Abul K A, Zhang W L J 2007 J. Nanoelectron. Optoelectron. 2 222

    [23]

    Zhang X C, Jin Y, Ma X F 1992 Appl. Phys. Lett. 61 2764

    [24]

    Wu Q, Zhang X C 1995 Appl. Phys. Lett. 67 3523

    [25]

    Sosnowski T S, Norris T B, Wang H H, Grenier P, Whitaker J F, Sung C Y 1997 Appl. Phys. Lett. 70 3245

    [26]

    Joseph S M, Prashant V K 2014 Nat. Photon. 8 737

    [27]

    Price M B, Butkus J, Jellicoe T C, Sadhanala A, Briane A, Halpert J E, Bronch K, Hodgkiss M J, Friend H R, Deschler F 2015 Nat. Commun. 6 8420

    [28]

    Hegmann F A, Ostroverkhova O, Cooke D G 2006 Photophysics of Molecular Materials (Weinheim:Wiley-VCH Press) p367

    [29]

    Palik 1998 Handbook of Optical Constants of Solids (Vol. 2) (Chestnut Hill:Academic Press) p752

    [30]

    Titova V L, Cocker L T, Cooke G D, Wang X Y, Meldrum A, Hegmann A F 2011 Phys. Rev. B 83 085403

  • [1] 王露璇, 刘奕彤, 史方圆, 祁纤雯, 沈涵, 宋瑛林, 方宇. $\boldsymbol\beta$-Ga2O3晶体本征缺陷诱导的宽带超快光生载流子动力学.  , 2023, 72(21): 214202. doi: 10.7498/aps.72.20231173
    [2] 李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩. 太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性.  , 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [3] 李高芳, 廖宇奥, 崔昊杨, 黄晨光, 王晨, 马国宏, 周炜, 黄志明, 褚君浩. Cd0.96Zn0.04Te光致载流子动力学特性的太赫兹光谱研究.  , 2023, 72(3): 037201. doi: 10.7498/aps.72.20221896
    [4] 陶泽华, 董海明, 段益峰. 太赫兹辐射场下的石墨烯光生载流子和光子发射.  , 2018, 67(2): 027801. doi: 10.7498/aps.67.20171730
    [5] 樊正富, 谭智勇, 万文坚, 邢晓, 林贤, 金钻明, 曹俊诚, 马国宏. 低温生长砷化镓的超快光抽运-太赫兹探测光谱.  , 2017, 66(8): 087801. doi: 10.7498/aps.66.087801
    [6] 李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕. 片上制备横向结构ZnO纳米线阵列紫外探测器件.  , 2016, 65(11): 118104. doi: 10.7498/aps.65.118104
    [7] 张会云, 刘蒙, 张玉萍, 何志红, 申端龙, 吴志心, 尹贻恒, 李德华. 基于振动弛豫理论提高光抽运太赫兹激光器输出功率的研究.  , 2014, 63(1): 010702. doi: 10.7498/aps.63.010702
    [8] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究.  , 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [9] 薛振杰, 李葵英, 孙振平. 核壳结构硒化镉/硫化镉/巯基乙酸量子点载流子输运特性.  , 2013, 62(6): 066801. doi: 10.7498/aps.62.066801
    [10] 张玉萍, 张洪艳, 尹贻恒, 刘陵玉, 张晓, 高营, 张会云. 具有分离门的电抽运多层石墨烯负动态电导率的理论研究.  , 2012, 61(4): 047803. doi: 10.7498/aps.61.047803
    [11] 焦威, 雷衍连, 张巧明, 刘亚莉, 陈林, 游胤涛, 熊祖洪. 有机发光二极管的光致磁电导效应.  , 2012, 61(18): 187305. doi: 10.7498/aps.61.187305
    [12] 张玉萍, 张会云, 耿优福, 谭晓玲, 姚建铨. 太赫兹波在有限电导率金属空芯波导中的传输特性.  , 2009, 58(10): 7030-7033. doi: 10.7498/aps.58.7030
    [13] 祁春超, 左都罗, 孟凡奇, 卢彦兆, 纠智先, 程祖海. 基于光放大的长脉冲抽运太赫兹激光.  , 2009, 58(7): 4641-4646. doi: 10.7498/aps.58.4641
    [14] 周忠祥, 王宏利, 申艳青, 刘大军, 刘 海, 何世禹, 杨德庄. 带电粒子辐照下石英玻璃和镀铝膜反射镜光学性能研究.  , 2008, 57(1): 592-599. doi: 10.7498/aps.57.592
    [15] 董国义, 李晓苇, 韦志仁, 杨少鹏, 韩 理, 傅广生. 微波吸收法研究Mn,Cu掺杂对ZnS:Mn,Cu光生载流子复合过程的影响.  , 2003, 52(3): 745-750. doi: 10.7498/aps.52.745
    [16] 张世斌, 孔光临, 徐艳月, 王永谦, 刁宏伟, 廖显伯. 微量硼掺杂非晶硅的瞬态光电导衰退及其光致变化.  , 2002, 51(1): 111-114. doi: 10.7498/aps.51.111
    [17] 金世荣, 李爱珍, 褚君浩, 陈诗伟. 量子阱中光生载流子的瞬态衰减过程与发光效率.  , 1997, 46(5): 1001-1010. doi: 10.7498/aps.46.1001
    [18] 王燕, 云峰, 廖显伯, 孔光临. MPS结构中的光生伏特现象.  , 1996, 45(10): 1615-1621. doi: 10.7498/aps.45.1615
    [19] 彭景翠. 含有共轭三键共聚物中光生载流子产生机制的探讨.  , 1993, 42(1): 149-153. doi: 10.7498/aps.42.149
    [20] 朱保如, 杨震华, 彭宏安. π+介子光生中的π-π作用效应.  , 1964, 20(6): 501-511. doi: 10.7498/aps.20.501
计量
  • 文章访问数:  6265
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-13
  • 修回日期:  2016-11-08
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map