-
In this work, we develop a novel method of creating dark hollow beam with vortex by converting a sine-Gaussian beam (SeGB) with edge-dislocation and astigmatism through using fractional Fourier transform (FrFT) optical system. On the basis of the definition of the FrFT, an analytical transformation formula is derived for an astigmatic SeGB passing through such a transform system. By use of the derived formulae, the changes of the intensity distribution and the corresponding phase properties associated with the transforming astigmatic SeGBs are analytically discussed in detail. It is found that for an input SeGB without astigmatism, there is still a dark line or an edge dislocation associated with the intensity distribution of the FrFT beam along the initial dislocation line, similar to that of the input SeGB. However, when the input SeGB astigmatically passes through an FrFT optical system, the dark line of the intensity distribution of the input SeGB can be converted into a solitary zero point, or in other words, a dark hollow beam with a single-charge vortex can be produced by SeGB with an edge dislocation. The results reveal that the astigmatism plays a critical role in transforming a SeGB into a dark hollow one through the FrFT optical system. Furthermore, some numerical calculation results based on the derived formula are presented and discussed graphically. It is shown that for appropriate beam parameters and carefully adjusting the transform angle of FrFT, dark hollow beams with single-charge vortex and elongated elliptic geometry can be realized with astigmatic SeGBs. The influences of the beam parameters and the transform angle of FrFT optical system on the generation of perfect dark hollow beams are also investigated. The results demonstrate that the linear eccentricity of the dark hollow beam, which is roughly defined as the ratio of semi-minor axis to semi-major one of the intensity pattern, mainly depends on the Fresnel number. And the optimal linear eccentricity may be relatively large under carefully selecting the beam and optical system parameters. Moreover, optimal parameter values corresponding to perfect dark hollow beam configurations which can be experimentally accessed are presented. As is well known, there are two types of pure phase defects or dislocations in the optical fields:one is screw dislocation or vortex and the other is edge-dislocation. Due to their important applications, the propagation dynamics of optical vortices or edge dislocations are extensively studied both theoretically and experimentally. The vortex-edge dislocation interaction is investigated in detail. However, there are fewer reports on the direct conversion between a single edge dislocation and a vortex. Therefore, the results obtained in this paper represent a significant step forward in understanding the transformation dynamics between beams with pure edge dislocation and vortex, and also opens possibilities for their potential applications, e.g., in generating dark hollow beams with elliptic geometry using FrFT systems.
-
Keywords:
- astigmatic sine-Gaussian beams /
- fractional Fourier transform (FrFT) /
- dark hollow beam with elliptic geometry /
- phase singularity
[1] Namias V 1980 IMA J. Appl. Math. 25 241
[2] Ozaktas H, Kutay M, Zalevsky Z 2001 The Fractional Fourier Transform with Applications in Optics and Signal Processing (New Jersey:Wiley) pp 319-386
[3] Lohmann A W 1993 J. Opt. Soc. Am. A 10 2181
[4] Yin J, Gao W, Zhu Y 2003 Prog. Opt. 45 119
[5] Ottl A, Ritter S, Kohl M, Esslinger T 2005 Phys. Rev. Lett. 95 090404
[6] Volyar A, Shvedov V, Fadeyeva T, Desyatnikov A S, Neshev D N, Krolikowski W, Kivshar Y S 2006 Opt. Express 14 3724
[7] Xie Q, Zhao D 2007 Opt. Commun. 275 394
[8] Liu Z, Dai J, Zhao X, Sun X, Liu S, Ahmad M A 2009 Opt. Lasers Eng. 47 1250
[9] Nie Y, Li X, Qi J, Ma H, Liao J, Yang J, Hu W 2012 Opt. Laser Technol. 44 384
[10] Lu S, You K, Chen L, Wang Y, Zhang D Y 2013 Optik 124 3301
[11] Zhu S, Zhao C, Chen Y, Cai Y 2013 Optik 124 5271
[12] Wei C, Lu X, Wu G, Wang F, Cai Y 2014 Appl. Phys. B 115 55
[13] Chakraborty R, Ghosh A 2006 J. Opt. Soc. Am. A 23 2278
[14] Zhao C, Lu X, Wang L, Chen H 2008 Opt. Laser Technol. 40 575
[15] Tang H Q, Zhu K C 2013 Opt. Laser Technol. 54 68
[16] Zhu K C, Tang H Q, Tang Y, Xia H 2014 Opt. Laser Technol. 64 11
[17] Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210 (in Chinese)[朱开成, 唐慧琴, 郑小娟, 唐英2014 63 104210]
[18] Anguianomorales M, Salaspeimbert D P, Trujilloschiaffino G, Corralmartínez L F, Garduñowilches I 2015 Opt. Quant. Electron. 47 2983
[19] Casperson L W, Hall D G, Tovar A A 1997 J. Opt. Soc. Am. A 14 3341
[20] Casperson L W, Tovar A A 1998 J. Opt. Soc. Am. A 15 954
[21] Wang X Q, L B D 2002 Acta Phys. Sin. 51 247 (in Chinese)[王喜庆, 吕百达2002 51 247]
[22] Eyyuboğlu H T, Baykal Y 2005 J. Opt. Soc. Am. A 22 2709
[23] Eyyuboğlu H T 2007 Optik 118 289
[24] Lu Z 2007 Chin. Phys. 16 1320
[25] Ding P, Qu J, Meng K, Cui Z 2008 Opt. Commun. 281 395
[26] Li J H, Yang A L, L B D 2009 Acta Phys. Sin. 58 674 (in Chinese)[李晋红, 杨爱林, 吕百达2009 58 674]
[27] Yahya B 2012 J. Opt. 14 075707
[28] Xu Y 2014 Optik 125 3465
[29] Huang Y, Wang F, Gao Z, Zhang B 2015 Opt. Express 23 1088
[30] Gerçekcioğlu H, Baykal Y 2014 Opt. Commun. 320 1
[31] Zhao D, Mao H, Liu H, Wang S, Jing F, Wei X 2004 Opt. Commun. 236 225
[32] Du X, Zhao D 2007 Phys. Lett. A 366 271
[33] Zhou G Q, Chu X X 2009 Opt. Express 17 10529
[34] Zhou G Q 2009 J. Mod. Opt. 56 886
[35] Chen S, Zhang T, Feng X 2009 Opt. Commun. 282 1083
[36] Serna J, Nemeş G 1993 Opt. Lett. 18 1774
[37] Gregor I, Enderlein J 2005 Opt. Lett. 30 2527
[38] Zheng C 2006 Phys. Lett. A 355 156
[39] Zheng C 2009 Optik 120 274
[40] Lu X, Wei C, Liu L, Wu G, Wang F, Cai Y 2014 Opt. Laser Technol. 56 92
[41] Wang X, Liu Z, Zhao D 2014 Opt. Eng. 53 086112
[42] Tang B, Jiang S, Jiang C, Zhu H 2014 Opt. Laser Technol. 59 116
-
[1] Namias V 1980 IMA J. Appl. Math. 25 241
[2] Ozaktas H, Kutay M, Zalevsky Z 2001 The Fractional Fourier Transform with Applications in Optics and Signal Processing (New Jersey:Wiley) pp 319-386
[3] Lohmann A W 1993 J. Opt. Soc. Am. A 10 2181
[4] Yin J, Gao W, Zhu Y 2003 Prog. Opt. 45 119
[5] Ottl A, Ritter S, Kohl M, Esslinger T 2005 Phys. Rev. Lett. 95 090404
[6] Volyar A, Shvedov V, Fadeyeva T, Desyatnikov A S, Neshev D N, Krolikowski W, Kivshar Y S 2006 Opt. Express 14 3724
[7] Xie Q, Zhao D 2007 Opt. Commun. 275 394
[8] Liu Z, Dai J, Zhao X, Sun X, Liu S, Ahmad M A 2009 Opt. Lasers Eng. 47 1250
[9] Nie Y, Li X, Qi J, Ma H, Liao J, Yang J, Hu W 2012 Opt. Laser Technol. 44 384
[10] Lu S, You K, Chen L, Wang Y, Zhang D Y 2013 Optik 124 3301
[11] Zhu S, Zhao C, Chen Y, Cai Y 2013 Optik 124 5271
[12] Wei C, Lu X, Wu G, Wang F, Cai Y 2014 Appl. Phys. B 115 55
[13] Chakraborty R, Ghosh A 2006 J. Opt. Soc. Am. A 23 2278
[14] Zhao C, Lu X, Wang L, Chen H 2008 Opt. Laser Technol. 40 575
[15] Tang H Q, Zhu K C 2013 Opt. Laser Technol. 54 68
[16] Zhu K C, Tang H Q, Tang Y, Xia H 2014 Opt. Laser Technol. 64 11
[17] Zhu K C, Tang H Q, Zheng X J, Tang Y 2014 Acta Phys. Sin. 63 104210 (in Chinese)[朱开成, 唐慧琴, 郑小娟, 唐英2014 63 104210]
[18] Anguianomorales M, Salaspeimbert D P, Trujilloschiaffino G, Corralmartínez L F, Garduñowilches I 2015 Opt. Quant. Electron. 47 2983
[19] Casperson L W, Hall D G, Tovar A A 1997 J. Opt. Soc. Am. A 14 3341
[20] Casperson L W, Tovar A A 1998 J. Opt. Soc. Am. A 15 954
[21] Wang X Q, L B D 2002 Acta Phys. Sin. 51 247 (in Chinese)[王喜庆, 吕百达2002 51 247]
[22] Eyyuboğlu H T, Baykal Y 2005 J. Opt. Soc. Am. A 22 2709
[23] Eyyuboğlu H T 2007 Optik 118 289
[24] Lu Z 2007 Chin. Phys. 16 1320
[25] Ding P, Qu J, Meng K, Cui Z 2008 Opt. Commun. 281 395
[26] Li J H, Yang A L, L B D 2009 Acta Phys. Sin. 58 674 (in Chinese)[李晋红, 杨爱林, 吕百达2009 58 674]
[27] Yahya B 2012 J. Opt. 14 075707
[28] Xu Y 2014 Optik 125 3465
[29] Huang Y, Wang F, Gao Z, Zhang B 2015 Opt. Express 23 1088
[30] Gerçekcioğlu H, Baykal Y 2014 Opt. Commun. 320 1
[31] Zhao D, Mao H, Liu H, Wang S, Jing F, Wei X 2004 Opt. Commun. 236 225
[32] Du X, Zhao D 2007 Phys. Lett. A 366 271
[33] Zhou G Q, Chu X X 2009 Opt. Express 17 10529
[34] Zhou G Q 2009 J. Mod. Opt. 56 886
[35] Chen S, Zhang T, Feng X 2009 Opt. Commun. 282 1083
[36] Serna J, Nemeş G 1993 Opt. Lett. 18 1774
[37] Gregor I, Enderlein J 2005 Opt. Lett. 30 2527
[38] Zheng C 2006 Phys. Lett. A 355 156
[39] Zheng C 2009 Optik 120 274
[40] Lu X, Wei C, Liu L, Wu G, Wang F, Cai Y 2014 Opt. Laser Technol. 56 92
[41] Wang X, Liu Z, Zhao D 2014 Opt. Eng. 53 086112
[42] Tang B, Jiang S, Jiang C, Zhu H 2014 Opt. Laser Technol. 59 116
计量
- 文章访问数: 6629
- PDF下载量: 350
- 被引次数: 0