搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层石墨烯在栅压调控下的各向异性刻蚀

王国乐 谢立 陈鹏 杨蓉 时东霞 张广宇

引用本文:
Citation:

双层石墨烯在栅压调控下的各向异性刻蚀

王国乐, 谢立, 陈鹏, 杨蓉, 时东霞, 张广宇

Anisotropic etching of bilayer graphene controlled by gate voltage

Wang Guo-Le, Xie Li, Chen Peng, Yang Rong, Shi Dong-Xia, Zhang Guang-Yu
PDF
导出引用
  • 石墨烯纳米结构在纳电子学研究领域表现出了良好的应用前景.氢等离子体各向异性刻蚀技术是加工石墨烯精细纳米结构的关键技术之一,可以实现10 nm以下平整的锯齿型石墨烯纳米带的可控加工.本文系统研究了外加电场对石墨烯各向异性刻蚀效应的影响,利用外加栅压实现了氧化硅衬底上的双层石墨烯各向异性刻蚀速率的调控.在30 V栅压变化范围内,刻蚀速率比可达45.由此不仅可以提高大批量加工石墨烯纳米结构的效率,还可以实现5 nm以下极小尺寸石墨烯纳米带的可控加工.研究结果为石墨烯精细纳米结构器件的高效批量加工提供了思路.
    Graphene nanostructures are proposed as promising materials for nanoelectronics such as transistors, sensors, spin valves and photoelectric devices. Zigzag edge graphene nanostructures had attracted broad attention due to their unique electronic properties. Anisotropic hydrogen-plasma etching has been demonstrated as an efficient top-down fabrication technique for zigzag-edged graphene nanostructures with a sub-10 nm spacial resolution. This anisotropic etching works for monolayer, bilayer and multilayer graphene and the etching rate depends on substrate temperature with a maximum etching rate at arround 400 C. It has been also founded that the anisotropic etching is also affected by the surface roughness and charge impurities of the substrate. Atomically flat substrates with no charge impurities would be ideal for the anisotropic etching. So far the understanding of hydrogen-plasma anisotropic etching, e.g. whether hydrogen radicals or hydrogen ions dominate the etching process, remains unclear. In this work, we investigated the anisotropic etching of graphene under electrical field modulations. Bilayer graphene peeled off from grahpite on SiO2 substrate was used as the experimental object. 2 nm-Ti (adhesive layer) and 40 nm-Au electrodes was deposited by electronic beam evaporation for electrical contacts. Gate voltates were applied to the bilayer graphene samples to make them either positively or negitively charged. These charged samples were then subjected to the hydrogen anisotropic etching at 400 C under the plasma power of 60 W and gas pressure of 0.3 Torr. The etching rates were characterized by the sizes of the etched hexagonal holes. We found that the etching rate for bilayer graphene on SiO2 substrate depends strongly on the gate voltages applied. With gate voltages sweeping from the negative to the positive, etching rate shows obvious decrease. 45 times of etching rate decrease was seen when sweeping the gate voltages from -30 V (positively charged) to 30 V (negatively charged). This gate-dependent anisotropic etching suggests that hydrogen ions rather than radicals plays a key role during the anisotropic etching process since the negatively charged graphene could neutralize the hydrogen ions quickly thus make them unreactive. The present work provides a strategy for fabrication of graphene nanostructures by anisotropic etching with a controllable manner.
      通信作者: 杨蓉, ryang@iphy.ac.cn;gyzhang@iphy.ac.cn ; 张广宇, ryang@iphy.ac.cn;gyzhang@iphy.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB934500,2013CBA01602)、国家自然科学基金(批准号:91223204,61325021,11574361,91323304)和中国科学院B类先导项目(批准号:XDB07010100)资助的课题.
      Corresponding author: Yang Rong, ryang@iphy.ac.cn;gyzhang@iphy.ac.cn ; Zhang Guang-Yu, ryang@iphy.ac.cn;gyzhang@iphy.ac.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2013CB934500, 2013CBA01602), the National Natural Science Foundation of China (Grant Nos. 91223204, 61325021, 11574361, 91323304), and Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07010100).
    [1]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338

    [2]

    Ponomarenko L, Schedin F, Katsnelson M, Yang R, Hill E, Novoselov K S, Geim A K 2008 Science 320 356

    [3]

    Martins T B, da Silva A J, Miwa R H, Fazzio A 2008 Nano Lett. 8 2293

    [4]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [5]

    Rycerz A, Tworzydlo J, Beenakker C 2007 Nat. Phys. 3 172

    [6]

    Kim W Y, Kim K S 2008 Nat. Nanotechnol. 3 408

    [7]

    Min S K, Kim W Y, Cho Y, Kim K S 2011 Nat.Nanotechnol 6 162

    [8]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer F P G, Gatti F, Koppens F H 2012 Nat. Nanotechnol. 7 363

    [9]

    Miao J S, Hu W D, Guo N, Lu Z Y, Liu X Q, Liao L, Chen P P, Jiang T, Wu S W, Ho J C, Wang L, Chen X S, Lu W 2015 Small 11 936

    [10]

    Long M, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, L Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254

    [11]

    Magda G Z, Jin X Z, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P, Hwang C, Biró L P, Tapasztó L 2014 Nature 514 608

    [12]

    Wang S Y, Talirz L, Pignedoli C A, Feng X L, Muellen K, Fasel R, Ruffieux P 2016 Nat. Commun. 7 11507

    [13]

    Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L 2010 Nature 466 470

    [14]

    Yang X Y, Dou X, Rouhanipour A, Zhi L J, Röder H J, Mllen K 2008 J. Am. Chem. Soc. 130 4216

    [15]

    Solís-Fernández P, Yoshida K, Ogawa Y, Tsuji M, Ago H 2013 Adv. Mater. 25 6562

    [16]

    Yang R, Zhang L C, Wang Y, Shi Z W, Shi D X, Gao H J, Wang E G, Zhang G Y 2010 Adv. Mater. 22 4014

    [17]

    Shi Z W, Yang R, Zhang L C, Wang Y, Liu D H, Shi D X, Wang E G, Zhang G Y 2011 Adv. Mater. 23 3061

    [18]

    Xie L M, Jiao L Y, Dai H J 2010 J. Am. Chem. Soc. 132 14751

    [19]

    Diankov G, Neumann M, Goldhaber-Gordon D 2013 ACS Nano 7 1324

    [20]

    Sharma R, Baik J H, Perera C J, Strano M S 2010 Nano Lett. 10 398

    [21]

    Yamamoto M, Einstein T L, Fuhrer M S, Cullen W G 2012 ACS Nano 6 8335

    [22]

    Nunomura S, Kondo M 2007 J. Appl. Phys. 102 093306

    [23]

    Harpale A, Panesi M, Chew H B 2016 Phys. Rev. B 93 035416

    [24]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [25]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [26]

    Roth J, Garcia-Rosales C 1996 Nucl. Fusion 36 1647

    [27]

    Mech B, Haasz A, Davis J 1998 J. Appl. Phys. 84 1655

    [28]

    Liu S G, Sun J Z, Dai S Y, Stirner T, Wang D Z 2010 J. Appl. Phys. 108 073302

  • [1]

    Kim K, Choi J Y, Kim T, Cho S H, Chung H J 2011 Nature 479 338

    [2]

    Ponomarenko L, Schedin F, Katsnelson M, Yang R, Hill E, Novoselov K S, Geim A K 2008 Science 320 356

    [3]

    Martins T B, da Silva A J, Miwa R H, Fazzio A 2008 Nano Lett. 8 2293

    [4]

    Son Y W, Cohen M L, Louie S G 2006 Nature 444 347

    [5]

    Rycerz A, Tworzydlo J, Beenakker C 2007 Nat. Phys. 3 172

    [6]

    Kim W Y, Kim K S 2008 Nat. Nanotechnol. 3 408

    [7]

    Min S K, Kim W Y, Cho Y, Kim K S 2011 Nat.Nanotechnol 6 162

    [8]

    Konstantatos G, Badioli M, Gaudreau L, Osmond J, Bernechea M, de Arquer F P G, Gatti F, Koppens F H 2012 Nat. Nanotechnol. 7 363

    [9]

    Miao J S, Hu W D, Guo N, Lu Z Y, Liu X Q, Liao L, Chen P P, Jiang T, Wu S W, Ho J C, Wang L, Chen X S, Lu W 2015 Small 11 936

    [10]

    Long M, Liu E F, Wang P, Gao A Y, Xia H, Luo W, Wang B G, Zeng J W, Fu Y J, Xu K, Zhou W, L Y Y, Yao S H, Lu M H, Chen Y F, Ni Z H, You Y M, Zhang X A, Qin S Q, Shi Y, Hu W D, Xing D Y, Miao F 2016 Nano Lett. 16 2254

    [11]

    Magda G Z, Jin X Z, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P, Hwang C, Biró L P, Tapasztó L 2014 Nature 514 608

    [12]

    Wang S Y, Talirz L, Pignedoli C A, Feng X L, Muellen K, Fasel R, Ruffieux P 2016 Nat. Commun. 7 11507

    [13]

    Cai J M, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X L 2010 Nature 466 470

    [14]

    Yang X Y, Dou X, Rouhanipour A, Zhi L J, Röder H J, Mllen K 2008 J. Am. Chem. Soc. 130 4216

    [15]

    Solís-Fernández P, Yoshida K, Ogawa Y, Tsuji M, Ago H 2013 Adv. Mater. 25 6562

    [16]

    Yang R, Zhang L C, Wang Y, Shi Z W, Shi D X, Gao H J, Wang E G, Zhang G Y 2010 Adv. Mater. 22 4014

    [17]

    Shi Z W, Yang R, Zhang L C, Wang Y, Liu D H, Shi D X, Wang E G, Zhang G Y 2011 Adv. Mater. 23 3061

    [18]

    Xie L M, Jiao L Y, Dai H J 2010 J. Am. Chem. Soc. 132 14751

    [19]

    Diankov G, Neumann M, Goldhaber-Gordon D 2013 ACS Nano 7 1324

    [20]

    Sharma R, Baik J H, Perera C J, Strano M S 2010 Nano Lett. 10 398

    [21]

    Yamamoto M, Einstein T L, Fuhrer M S, Cullen W G 2012 ACS Nano 6 8335

    [22]

    Nunomura S, Kondo M 2007 J. Appl. Phys. 102 093306

    [23]

    Harpale A, Panesi M, Chew H B 2016 Phys. Rev. B 93 035416

    [24]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666

    [25]

    Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97 187401

    [26]

    Roth J, Garcia-Rosales C 1996 Nucl. Fusion 36 1647

    [27]

    Mech B, Haasz A, Davis J 1998 J. Appl. Phys. 84 1655

    [28]

    Liu S G, Sun J Z, Dai S Y, Stirner T, Wang D Z 2010 J. Appl. Phys. 108 073302

  • [1] 朱奕衡, 朱志光, 陈成克, 蒋梅燕, 李晓, 鲁少华, 胡晓君. 基于石墨烯竖立片层常压相变制备纳米金刚石.  , 2024, 73(2): 028101. doi: 10.7498/aps.73.20231064
    [2] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究.  , 2022, 71(2): 027803. doi: 10.7498/aps.71.20211477
    [3] 王飞, 魏兵. 电磁偏置各向异性石墨烯界面的传播矩阵.  , 2021, 70(1): 014102. doi: 10.7498/aps.70.20201089
    [4] 吴成伟, 任雪, 周五星, 谢国锋. 多孔石墨烯纳米带各向异性和超低热导的理论研究.  , 2021, (): . doi: 10.7498/aps.70.20211477
    [5] 卢敏, 黄惠莲, 余冬海, 刘维清, 魏望和. 不同晶面银纳米晶高温熔化的各向异性.  , 2015, 64(10): 106101. doi: 10.7498/aps.64.106101
    [6] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振.  , 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [7] 周建美, 张烨, 汪宏年, 杨守文, 殷长春. 耦合势有限体积法高效模拟各向异性地层中海洋可控源的三维电磁响应.  , 2014, 63(15): 159101. doi: 10.7498/aps.63.159101
    [8] 竺云, 韩娜. 引入纳米氧化层的CoFe/Pd双层膜结构中增强的垂直磁各向异性研究.  , 2012, 61(16): 167505. doi: 10.7498/aps.61.167505
    [9] 陈文兵, 韩满贵, 邓龙江. 具有横向磁晶各向异性的钴纳米线的微波吸收性能.  , 2011, 60(1): 017507. doi: 10.7498/aps.60.017507
    [10] 万勇, 韩文娟, 刘均海, 夏临华, Xavier Mateos, Valentin Petrov, 张怀金, 王继扬. 单斜结构的Yb:KLu(WO4)2晶体光谱和激光性质的各向异性.  , 2009, 58(1): 278-284. doi: 10.7498/aps.58.278.1
    [11] 陈桂波, 汪宏年, 姚敬金, 韩子夜. 各向异性海底地层海洋可控源电磁响应三维积分方程法数值模拟.  , 2009, 58(6): 3848-3857. doi: 10.7498/aps.58.3848
    [12] 孟繁义, 吴 群, 傅佳辉, 顾学迈, 李乐伟. 三维各向异性超常媒质交错结构的亚波长谐振特性研究.  , 2008, 57(10): 6213-6220. doi: 10.7498/aps.57.6213
    [13] 吴 超, 谢自力, 张 荣, 张 曾, 刘 斌, 李 弋, 傅德颐, 修向前, 韩 平, 施 毅, 郑有炓. m面GaN平面内结构和光学各向异性研究.  , 2008, 57(11): 7190-7193. doi: 10.7498/aps.57.7190
    [14] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性.  , 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [15] 施方也, 方允樟, 孙怀君, 郑金菊, 林根金, 吴锋民. 应力退火Fe基纳米晶薄带横向磁各向异性的介观结构研究.  , 2007, 56(7): 4009-4016. doi: 10.7498/aps.56.4009
    [16] 林宝勤, 徐利军, 袁乃昌. 以各向异性介质为衬底的共面紧凑型光子带隙结构.  , 2005, 54(8): 3711-3715. doi: 10.7498/aps.54.3711
    [17] 高汝伟, 冯维存, 王 标, 陈 伟, 韩广兵, 张 鹏, 刘汉强, 李 卫, 郭永权, 李岫梅. 纳米复合永磁材料的有效各向异性与矫顽力.  , 2003, 52(3): 703-707. doi: 10.7498/aps.52.703
    [18] 王成伟, 彭 勇, 潘善林, 张浩力, 力虎林. α-Fe纳米线阵列膜磁各向异性的穆斯堡尔谱研究.  , 1999, 48(11): 2146-2150. doi: 10.7498/aps.48.2146
    [19] 纪松, 杨国斌, 王润. 纳米软磁合金的双相无规磁各向异性模型.  , 1996, 45(12): 2061-2067. doi: 10.7498/aps.45.2061
    [20] 陆全康, 陈国荣, 王钤, 熊小明, 金勇, 唐明. 辐射在各向异性等离子体中散射的结构因子.  , 1983, 32(5): 618-626. doi: 10.7498/aps.32.618
计量
  • 文章访问数:  6405
  • PDF下载量:  475
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-22
  • 修回日期:  2016-08-12
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map