搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

布朗运动和湍流扩散作用下槽流中纤维悬浮流动特性的研究

夏懿 库晓珂 沈苏华

引用本文:
Citation:

布朗运动和湍流扩散作用下槽流中纤维悬浮流动特性的研究

夏懿, 库晓珂, 沈苏华

Flow property of fiber suspension in a turbulent channel flow under considering both Brownian and turbulent diffusions

Xia Yi, Ku Xiao-Ke, Shen Su-Hua
PDF
导出引用
  • 为了探讨槽道中纤维悬浮湍流场特性,本文对修正的雷诺平均纳维-斯托克斯方程、含纤维项的湍动能和耗散率方程、纤维动力学方程以及纤维取向概率密度函数方程进行了数值研究,同时进行了相关实验以验证计算结果.研究结果表明,流场中尤其是近壁区域,纤维取向趋向于与流动方向一致,且该现象随着雷诺数和纤维浓度的减小以及纤维长径比的增大而更为明显.纤维在槽道中分布不均匀,但随着雷诺数的增大和纤维长径比的减小趋于均匀.相对于单相流,纤维悬浮流的流向平均速度剖面更陡峭,且剖面斜率随着纤维浓度、长径比的增大以及雷诺数的减小而变大,纤维的存在使湍流场的湍动能和雷诺应力减小,且减小程度随着纤维浓度和长径比的增大以及雷诺数的减小而增加.流场中的第一法向应力差小于0.05且远小于剪切应力.从壁面到中心,剪切应力增加而第一法向应力差减小.剪切应力和第一法向应力差都随着纤维浓度和长径比的增大而增大.随着雷诺数的增大,剪切应力增大而第一法向应力差减小.纤维浓度对于剪切应力和第一法向应力差的影响比纤维长径比更显著.
    The issue of fiber suspension flow has received great substantial attention in the last decades. In contrast with the abundant researches of normal size fiber suspensions flow, this paper is devoted to the small size fiber suspension composed of water and polyarmide fiber where Brownian motion plays an important role and thus cannot be neglected. The spatial distribution and orientation of fiber, streamwise mean velocity profile, turbulent kinetic energy, Reynolds stress and rheological property of fiber suspension in a turbulent channel flow are obtained and analyzed both numerically and experimentally. To simulate the small fiber suspension flow well, the well-known Reynolds averaged Navier-Stokes (N-S) equation governing the suspension flow is modified in consideration of the effect of fibers on base flow. The equation describing the probability density functions for fiber orientation is derived in view of the rotary Brownian diffusion. The general dynamic equation for fibers is reshaped in the effect of spatial Brownian diffusion. For the sake of the closure of the N-S equation, the turbulence kinetic energy and turbulence dissipation rate equations with fiber term are employed. The conditional finite difference method is adopted to discrete these partial differential equations. And the diffusion term and convective term are discretized by the central finite differences and the second-order upwind finite difference schemes, respectively. The second and fourth-order orientation tensors are integrated by the Simpson formula. Experiment is also performed to validate some numerical results. The results show that most fibers tend to align parallelly to the flow direction in the flow, especially in regions near the wall. Such a phenomenon is more obvious with the decreases of Reynolds number and fiber concentration, and with the increase of fiber aspect ratio. Fiber volume fraction distribution is non-uniform across the channel, and becomes more uniform with increasing Reynolds number, and with reducing fiber aspect ratio. The changes of fiber orientation distribution and spatial distribution are not sensitive to fiber aspect ratio for 5. Streamwise mean velocity profile in fiber suspension has a steeper slope than that in single phase flow, and the steepness increases as the fiber concentration and fiber aspect ratio increase, and as the Reynolds number decreases. The presence of fiber will reduce the turbulence kinetic energy and Reynolds stress. The effect of fiber on the turbulence suppression becomes more obvious with the increases of fiber concentration and aspect ratio, and with the decrease of Reynolds number. The first normal stress difference is less than 0.05 and much less than the shear stress. From the wall to the center of the channel, the shear stress increases while the first normal stress difference decreases. Both the shear stress and the first normal stress difference increase with increasing fiber concentration and aspect ratio. Shear stress increases while the first normal stress difference decreases with increasing Reynolds number. The effects of fiber concentration on the shear stress and the first normal stress difference are larger than the fiber aspect ratio.
      通信作者: 夏懿, dynamic_xia@zju.edu.cn
    • 基金项目: 国家自然科学基金重大项目(批准号:11132008)资助的课题.
      Corresponding author: Xia Yi, dynamic_xia@zju.edu.cn
    • Funds: Project supported by the Major Program of the National Natural Science Foundation of China (Grant No. 11132008).
    [1]

    Zhang H F, Ahmadi G, Fan F G, McLaughlin J B 2001 Int. J. Multiphas. Flow 27 971

    [2]

    Lin J Z, Shi X, You Z J 2003 J. Aerosol Sci. 34 909

    [3]

    Lin J Z, Shi X, Yu Z S 2003 Int. J. Multiphas. Flow 29 1355

    [4]

    Lin J Z, Zhang W F, Yu Z S 2004 J. Aerosol Sci. 35 63

    [5]

    Lin J Z, Zhang L X, Zhang W F 2006 J. Colloid Interf. Sci. 296 721

    [6]

    Lin J Z, Gao Z Y, Zhou K, Chan T L 2006 Appl. Math. Model. 30 1010

    [7]

    Manhart M, Friedrich R 2004 Direct and Large-eddy Simulation V (Dordrecht: Springer Netherlands) p287

    [8]

    Manhart M 2003 J. Non-Newton. Fluid. 112 269

    [9]

    Manhart M 2004 Eur. J. Mech. B: Fluid. 23 461

    [10]

    Gillissen J J J, Boersma B J, Nieuwstadt F T M, Lamballais E, Friedrich R, Geurts B J, Metais O 2006 Direct and Large-eddy Simulation VI (Dordrecht: Springer Netherlands) p303

    [11]

    Moosaie A, Manhart M 2013 Acta Mech. 224 2385

    [12]

    Moosaie A 2013 J. Disper. Sci. Technol. 34 870

    [13]

    Batchelor G K 1971 J. Fluid Mech. 46 813

    [14]

    Mackaplow M B, Shaqfeh E S G 1996 J. Fluid Mech. 329 155

    [15]

    Advani S G, Tucker C L 1987 J. Rheol. 31 751

    [16]

    Cintra J S, Tucker C L 1995 J. Rheol. 39 1095

    [17]

    Koch D L 1995 Phys. Fluids 7 2086

    [18]

    Folgar F, Tucker C L Ⅲ 1984 J. Reinf. Plast. Comp. 3 98

    [19]

    Olson J A 2001 Int. J. Multiphas. Flow 27 2083

    [20]

    Li G, Tang J X 2004 Phys. Rev. E 69 061921

    [21]

    De La Torre J G, Bloomfield V A 1981 Q. Rev. Biophys. 14 81

    [22]

    Lin J Z, Shen S H 2010 Sci. China: Phys. Mech. Astron. 53 1659

    [23]

    Friedlander S K 2000 Smoke, Dust and Haze: Fundamentals of Aerosol Behavior (New York, Oxford: Oxford University Press) p59

    [24]

    Chen H S, Ding Y L, Lapkin A, Fan X L 2009 J. Nanopart. Res. 11 1513

    [25]

    Chen H S, Ding Y L, Lapkin A 2009 Powder Technol. 194 132

    [26]

    Yu L, Liu D, Botz F 2012 Exp. Therm. Fluid Sci. 37 72

    [27]

    Bernstein O, Shapiro M 1994 J. Aerosol Sci. 25 113

    [28]

    Cox R G 1971 J. Fluid Mech. 45 625

  • [1]

    Zhang H F, Ahmadi G, Fan F G, McLaughlin J B 2001 Int. J. Multiphas. Flow 27 971

    [2]

    Lin J Z, Shi X, You Z J 2003 J. Aerosol Sci. 34 909

    [3]

    Lin J Z, Shi X, Yu Z S 2003 Int. J. Multiphas. Flow 29 1355

    [4]

    Lin J Z, Zhang W F, Yu Z S 2004 J. Aerosol Sci. 35 63

    [5]

    Lin J Z, Zhang L X, Zhang W F 2006 J. Colloid Interf. Sci. 296 721

    [6]

    Lin J Z, Gao Z Y, Zhou K, Chan T L 2006 Appl. Math. Model. 30 1010

    [7]

    Manhart M, Friedrich R 2004 Direct and Large-eddy Simulation V (Dordrecht: Springer Netherlands) p287

    [8]

    Manhart M 2003 J. Non-Newton. Fluid. 112 269

    [9]

    Manhart M 2004 Eur. J. Mech. B: Fluid. 23 461

    [10]

    Gillissen J J J, Boersma B J, Nieuwstadt F T M, Lamballais E, Friedrich R, Geurts B J, Metais O 2006 Direct and Large-eddy Simulation VI (Dordrecht: Springer Netherlands) p303

    [11]

    Moosaie A, Manhart M 2013 Acta Mech. 224 2385

    [12]

    Moosaie A 2013 J. Disper. Sci. Technol. 34 870

    [13]

    Batchelor G K 1971 J. Fluid Mech. 46 813

    [14]

    Mackaplow M B, Shaqfeh E S G 1996 J. Fluid Mech. 329 155

    [15]

    Advani S G, Tucker C L 1987 J. Rheol. 31 751

    [16]

    Cintra J S, Tucker C L 1995 J. Rheol. 39 1095

    [17]

    Koch D L 1995 Phys. Fluids 7 2086

    [18]

    Folgar F, Tucker C L Ⅲ 1984 J. Reinf. Plast. Comp. 3 98

    [19]

    Olson J A 2001 Int. J. Multiphas. Flow 27 2083

    [20]

    Li G, Tang J X 2004 Phys. Rev. E 69 061921

    [21]

    De La Torre J G, Bloomfield V A 1981 Q. Rev. Biophys. 14 81

    [22]

    Lin J Z, Shen S H 2010 Sci. China: Phys. Mech. Astron. 53 1659

    [23]

    Friedlander S K 2000 Smoke, Dust and Haze: Fundamentals of Aerosol Behavior (New York, Oxford: Oxford University Press) p59

    [24]

    Chen H S, Ding Y L, Lapkin A, Fan X L 2009 J. Nanopart. Res. 11 1513

    [25]

    Chen H S, Ding Y L, Lapkin A 2009 Powder Technol. 194 132

    [26]

    Yu L, Liu D, Botz F 2012 Exp. Therm. Fluid Sci. 37 72

    [27]

    Bernstein O, Shapiro M 1994 J. Aerosol Sci. 25 113

    [28]

    Cox R G 1971 J. Fluid Mech. 45 625

  • [1] 彭颖吒, 张锴, 郑百林. 恒流充电有限柱体电极浓度分布及扩散诱导应力解析分析.  , 2024, 73(15): 158201. doi: 10.7498/aps.73.20231753
    [2] 苗春贺, 袁良柱, 陆建华, 王鹏飞, 徐松林. 聚甲基丙烯酸甲酯的冲击破碎扩散特性.  , 2022, 71(21): 216201. doi: 10.7498/aps.71.20220740
    [3] 苗春贺, 袁良柱, 陆建华, 王鹏飞, 徐松林. PMMA的冲击破碎扩散特性研究.  , 2022, 0(0): . doi: 10.7498/aps.7120220740
    [4] 马奥杰, 陈颂佳, 李玉秀, 陈颖. 纳米颗粒布朗扩散边界条件的分子动力学模拟.  , 2021, 70(14): 148201. doi: 10.7498/aps.70.20202240
    [5] 王任, 刘胜, 张默然, 王秉中. 电磁飞环的缓扩散传播特性.  , 2020, 69(16): 164101. doi: 10.7498/aps.69.20200271
    [6] 张鹏, 洪延姬, 丁小雨, 沈双晏, 冯喜平. 等离子体对含硼两相流扩散燃烧特性的影响.  , 2015, 64(20): 205203. doi: 10.7498/aps.64.205203
    [7] 孟凡净, 刘焜. 密集剪切颗粒流中速度波动和自扩散特性的离散元模拟.  , 2014, 63(13): 134502. doi: 10.7498/aps.63.134502
    [8] 杨伟国, 钟诚, 夏辉. 浓悬浮液中渗透性颗粒的扩散特性研究.  , 2014, 63(21): 214705. doi: 10.7498/aps.63.214705
    [9] 钟诚, 陈智全, 杨伟国, 夏辉. 电解质对浓悬浮液中胶体颗粒扩散特性的影响.  , 2013, 62(21): 214207. doi: 10.7498/aps.62.214207
    [10] 张传瑜, 高 涛, 张云光, 周晶晶, 朱正和, 陈 波. 氦对LaNi5晶体结构的影响及其扩散特性研究.  , 2008, 57(7): 4379-4385. doi: 10.7498/aps.57.4379
    [11] 马 军, 靳伍银, 易 鸣, 李延龙. 时变反应扩散系统中螺旋波和湍流的控制.  , 2008, 57(5): 2832-2841. doi: 10.7498/aps.57.2832
    [12] 张朝辉, 雒建斌, 温诗铸. 化学机械抛光中纳米颗粒的作用分析.  , 2005, 54(5): 2123-2127. doi: 10.7498/aps.54.2123
    [13] 张海燕. 多分量胶体悬浮系统转动扩散张量的反射理论.  , 2002, 51(2): 449-455. doi: 10.7498/aps.51.449
    [14] 陈贺胜. 周期驱动的一维台球模型的量子扩散特性.  , 2000, 49(5): 844-848. doi: 10.7498/aps.49.844
    [15] 刘立伟, 王作维, 周鲁卫, 王治金, 高广君, 刘晓军. 微晶纤维素电流变液在挤压流中的粘弹性.  , 2000, 49(9): 1886-1891. doi: 10.7498/aps.49.1886
    [16] 吴烽, 汪秉宏, 杨月桂, 姚斌. 电流变液中悬浮粒子的布朗运动与其聚集之间关系.  , 1996, 45(3): 403-408. doi: 10.7498/aps.45.403
    [17] 李宏成, D. G. HINKS. 反应扩散法制备的PbMo6S8超导带的超导特性.  , 1984, 33(7): 1062-1064. doi: 10.7498/aps.33.1062
    [18] 邱孝明. 非均匀等离子体湍流的重正化准线性理论(Ⅱ)——湍性等离子体中的共振扩散.  , 1980, 29(9): 1104-1109. doi: 10.7498/aps.29.1104
    [19] 马大猷, 李沛滋, 戴根华, 王宏玉. 多孔材料的出流和多孔扩散消声理论.  , 1978, 27(6): 631-644. doi: 10.7498/aps.27.631
    [20] 肖振喜, 张应. 低压含氢扩散云室.  , 1960, 16(2): 113-116. doi: 10.7498/aps.16.113
计量
  • 文章访问数:  5330
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-02-05
  • 修回日期:  2016-07-12
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map