-
本文研究了钙钛矿太阳能电池不同工作温度下光伏性能的时间响应特性. 结果表明,钙钛矿太阳能电池光伏性能需要经过一段时间光照后才能达到稳定. 且随着工作温度降低,电池光伏性能达到稳定所需的响应时间也越长. 当电池达到稳定后,电池开路电压会随着温度降低而增大. 在此之前,开路电压会在低温下发生显著的衰减. 这意味着钙钛矿太阳能电池的时间响应主要来源于其内部内建电场的缓慢变化. 通过测量光照前后电池外量子效率发现,光生载流子的分离和收集效率会在光照后得到明显改善. 这也暗示了内建电场在光照前后发生了改变. 钙钛矿材料中的离子迁移被认为是引起内建电场发生变化的原因. 这有助于更好地理解钙钛矿太阳能电池中载流子输运机制.In recent years, perovskite solar cell (PSC) has achieved power conversion efficiency as high as over 20 %, making it competitive with high-efficiency thin film solar cells such as CuInGaSe and CdTe solar cells. However, the critical issue of reliability and stability for PSC should be addressed since a significant degradation of photovoltaic (PV) performance at low temperature has been found regardless of planar mesoporous PSC. To reveal the degradation of PV performance in PSC, the temperature-dependent PV performance of the planar PSC is investigated in detail. A PSC sample is loaded into a cryostat chamber connected to a compressor and illuminated by a halogen lamp. The operating temperature varies from 200 K to 325 K and the current-voltage (J-V) characteristic of planar PSC is measured at different scan rates from 10 V/s to 0.0017 V/s. At a fast scan rate of 10 V/s, the PSC shows a low PV performance at either low temperature or high temperature. The short-circuit current (JSC), open-circuit voltage (VOC) and maximum power point (PMPP) are found to decline with the temperature decrteasing. Moreover, the J-V curve also shows the S-shape characteristic. This suggests that the inefficient transport of photo-generated carriers occurs in the PSC. Ions such as Pb2+, CH3NH3+ and I-vacancies cause the screening effect of built-in field and the photo-generated carriers cannot be separated nor collected efficiently. As a result, JSC and VOC show small values in J-V curves measured at a fast scan rate. However, the degradation in PV performance is temporary. The PV performance gradually reaches a steady state at different operating temperatures with scan rate going down to 0.0017 V/s. The PMPP and VOC increase with temperature decreasing. These results indicate that a long illumination time is necessary for PSC to reach a steady state. After long-time illumination under biased condition (i.e., J-V curves measured at slow scan rate), the built-in field is compensated for by the external bias and the ions piling in the interface regions have enough time to diffuse towards the opposite direction. Thus, the screening effect of built-in field is reduced and the PV performance of PSC reaches a steady state. According to the result of device simulation, the increasing VOC at low temperature is attributed to the enhanced built-in potential difference and the reduced recombination rate of carriers. The temperature-dependent external quantum efficiency measurements of planar PSC before and after light illuminationis are performed to investigate the mechanism of carrier transport. It reveals that the separation and collection efficiencies of photo-generated carriers can be improved significantly after light illumination due to the fact that the screening effect of built-in field is reduced. These findings help understand the carrier transport mechanism in planar PSC.
-
Keywords:
- perovskite solar cell /
- time response /
- ion migration /
- quantum efficiency
[1] Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088
[2] La-o-vorakiat C, Salim T, Kadro J, Khuc M T, Haselsberger R, Cheng L, Xia H, Gurzadyan G G, Su H, Lam Y M, Marcus R A, Michel-Beyerle M E, Chia E E M 2015 Nat. Commun. 6 7903
[3] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
[4] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[5] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234
[6] Zhang H, Qiao X, Shen Y, Moehl T, Zakeeruddin S M, Gratzel M, Wang M 2015 J. Mater. Chem. A 3 11762
[7] Cojocaru L, Uchida S, Sanehira Y, Gonzalez-Pedro V, Bisquert J, Nakazaki J, Kubo T, Segawa H 2015 Chem. Lett. 44 1557
[8] Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, De Angelis F 2014 J. Phys. Chem. Lett. 5 2662
[9] Ge S, Xu H, Wang W, Cao R, Wu Y, Xu W, Zhu J, Xue F, Hong F, Xu R, Xu F, Wang L, Huang J 2016 Vacuum 128 91
[10] Ono L K, Raga S R, Wang S, Kato Y, Qi Y 2015 J. Mater. Chem. A 3 9074
[11] Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511
[12] Huang J, Wang H, Qi Y, Yu J 2014 Appl. Phys. Lett. 104 203301
[13] Zou Y, Holmes R J 2013 Appl. Phys. Lett. 103 053302
[14] Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, L S T, Wu H J, Luo Y H, Li D M, Meng Q B 2015 Acta Phys. Sin. 64 038402 (in Chinese) [石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波 2015 64 038402]
[15] Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J 2015 Nat. Mater. 14 193
[16] Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B 2015 Adv. Energy Mater. 5 1500279
[17] Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306
[18] Yuan Y, Xu R, Xu H T, Hong F, Xu F, Wang L J 2015 Chin. Phys. B 24 116302
[19] Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2015 IEEE J. Photovoltaics 5 401
[20] Minemoto T, Murata M 2015 Sol. Energy Mater. Sol. Cells 133 8
[21] Liu F, Zhu J, Wei J, Li Y, L M, Yang S, Zhang B, Yao J, Dai S 2014 Appl. Phys. Lett. 104 253508
[22] Rana O, Srivastava R, Grover R, Zulfequar M, Husain M, Kamalasanan M N 2011 Synth. Met. 161 828
[23] Zhao S R, Huang Z P, Sun L, Sun P C, Zhang C J, Wu Y H, Cao H, Wang S L, Zhu J H 2013 Acta Phys. Sin. 62 188801 (in Chinese) [赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩 2013 62 188801]
[24] Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kukihara K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984
[25] Leijtens T, Srimath Kandada A R, Eperon G E, Grancini G, D'Innocenzo V, Ball J M, Stranks S D, Snaith H J, Petrozza A 2015 J. Am. Chem. Soc. 137 15451
[26] Lai T H, Tsang S W, Manders J R, Chen S, So F 2013 Mater. Today 16 424
[27] Xu L, Lee Y J, Hsu J W P 2014 Appl. Phys. Lett. 105 123904
-
[1] Im J H, Lee C R, Lee J W, Park S W, Park N G 2011 Nanoscale 3 4088
[2] La-o-vorakiat C, Salim T, Kadro J, Khuc M T, Haselsberger R, Cheng L, Xia H, Gurzadyan G G, Su H, Lam Y M, Marcus R A, Michel-Beyerle M E, Chia E E M 2015 Nat. Commun. 6 7903
[3] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341
[4] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[5] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S I 2015 Science 348 1234
[6] Zhang H, Qiao X, Shen Y, Moehl T, Zakeeruddin S M, Gratzel M, Wang M 2015 J. Mater. Chem. A 3 11762
[7] Cojocaru L, Uchida S, Sanehira Y, Gonzalez-Pedro V, Bisquert J, Nakazaki J, Kubo T, Segawa H 2015 Chem. Lett. 44 1557
[8] Gottesman R, Haltzi E, Gouda L, Tirosh S, Bouhadana Y, Zaban A, Mosconi E, De Angelis F 2014 J. Phys. Chem. Lett. 5 2662
[9] Ge S, Xu H, Wang W, Cao R, Wu Y, Xu W, Zhu J, Xue F, Hong F, Xu R, Xu F, Wang L, Huang J 2016 Vacuum 128 91
[10] Ono L K, Raga S R, Wang S, Kato Y, Qi Y 2015 J. Mater. Chem. A 3 9074
[11] Snaith H J, Abate A, Ball J M, Eperon G E, Leijtens T, Noel N K, Stranks S D, Wang J T W, Wojciechowski K, Zhang W 2014 J. Phys. Chem. Lett. 5 1511
[12] Huang J, Wang H, Qi Y, Yu J 2014 Appl. Phys. Lett. 104 203301
[13] Zou Y, Holmes R J 2013 Appl. Phys. Lett. 103 053302
[14] Shi J J, Wei H Y, Zhu L F, Xu X, Xu Y Z, L S T, Wu H J, Luo Y H, Li D M, Meng Q B 2015 Acta Phys. Sin. 64 038402 (in Chinese) [石将建, 卫会云, 朱立峰, 许信, 徐余颛, 吕松涛, 吴会觉, 罗艳红, 李冬梅, 孟庆波 2015 64 038402]
[15] Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C, Sharma P, Gruverman A, Huang J 2015 Nat. Mater. 14 193
[16] Zhao C, Chen B, Qiao X, Luan L, Lu K, Hu B 2015 Adv. Energy Mater. 5 1500279
[17] Wagenpfahl A, Rauh D, Binder M, Deibel C, Dyakonov V 2010 Phys. Rev. B 82 115306
[18] Yuan Y, Xu R, Xu H T, Hong F, Xu F, Wang L J 2015 Chin. Phys. B 24 116302
[19] Yamada Y, Nakamura T, Endo M, Wakamiya A, Kanemitsu Y 2015 IEEE J. Photovoltaics 5 401
[20] Minemoto T, Murata M 2015 Sol. Energy Mater. Sol. Cells 133 8
[21] Liu F, Zhu J, Wei J, Li Y, L M, Yang S, Zhang B, Yao J, Dai S 2014 Appl. Phys. Lett. 104 253508
[22] Rana O, Srivastava R, Grover R, Zulfequar M, Husain M, Kamalasanan M N 2011 Synth. Met. 161 828
[23] Zhao S R, Huang Z P, Sun L, Sun P C, Zhang C J, Wu Y H, Cao H, Wang S L, Zhu J H 2013 Acta Phys. Sin. 62 188801 (in Chinese) [赵守仁, 黄志鹏, 孙雷, 孙朋超, 张传军, 邬云华, 曹鸿, 王善力, 褚君浩 2013 62 188801]
[24] Shen Q, Ogomi Y, Chang J, Tsukamoto S, Kukihara K, Oshima T, Osada N, Yoshino K, Katayama K, Toyoda T, Hayase S 2014 Phys. Chem. Chem. Phys. 16 19984
[25] Leijtens T, Srimath Kandada A R, Eperon G E, Grancini G, D'Innocenzo V, Ball J M, Stranks S D, Snaith H J, Petrozza A 2015 J. Am. Chem. Soc. 137 15451
[26] Lai T H, Tsang S W, Manders J R, Chen S, So F 2013 Mater. Today 16 424
[27] Xu L, Lee Y J, Hsu J W P 2014 Appl. Phys. Lett. 105 123904
计量
- 文章访问数: 8018
- PDF下载量: 430
- 被引次数: 0