-
本文将常用的键长物理截断方法与电子局域函数方法相结合,运用于分析共价系统的非晶态结构,得到了更合理的原子成键信息,提高了非晶态结构模型分析的可靠性. 本工作以相变存储材料GeTe合金为例,通过采用上述方法详细研究了GeTe合金非晶态中原子间成键及结构信息,确定了其合理的成键物理截断长度为3.05 ,电子局域函数阈值为0.63. 研究结果显示,当电子局域函数的数值由0.58逐渐增大至0.63时,结构中所截断的化学键大部分是强度较弱的非同质键(即Ge-Te键),而强度较强的Ge-Ge键的数量几乎不变. 对Ge原子配位数和其键角分布等结构信息的分析表明,Ge原子以3配位和4配位为主,其中3配位的Ge原子主要是以缺陷八面体形式存在,而4配位的Ge原子则主要以四面体的形式存在. 此外,在本研究工作中所建立的确定成键物理截断长度及电子局域函数阈值的方法也可以应用于其他具有共价键性质的非晶态材料研究.The analysis of the local structure of covalent glass is one of the major challenges for analyzing the amorphous structure. Usually, people use a cutoff distance to determine the coordinated atoms and relevant structural information, such as coordination number and bond angles. Recently, the electron localization function (ELF) has been used to analyze the local structure of amorphous Ge2Sb2Te5. But how to determine the EFL threshold and cutoff distance has not been reported. Here, according to the ab-initio calculations, we systematically investigate the relationship between the bond number and the ELF threshold, and also the cutoff distance in amorphous GeTe. The reasonable value of the ELF threshold and the cutoff distance are determined according to the inflection point and slope change of the bond number with ELF value respectively. Furthermore, the minimal ELF value distributions of Ge-Ge, Ge-Te and Te-Te bonds are presented. The comparison shows that the majority of removed bonds in structural analysis are weak Ge-Te bonds due to the low localization degree of electron. In contrast, the stronger Ge-Ge bonds are almost unchanged when changing the ELF threshold value from 0.58 to 0.63 because of the high localization degree of electron. The average minimal ELF value of Ge-Te bonds in crystalline GeTe is calculated, and it is close to the ELF threshold that is determined by the inflection point. t is easy to find that the Ge-Te bonds which are removed by increasing the ELF threshold are relatively weak. Therefore, these weaker bonds should be removed in structure analysis, which also means that the ELF threshold determined by the inflection point are reasonable value. Finally, based on the EFL threshold value, the coordination number and bond angle distribution of Ge in amorphous GeTe are obtained. The analysis of the coordination number of the Ge atoms shows that as the ELF threshold increases from 0.58 to 0.63, the 5- fold Ge atoms almost disappear because they are against the (8-N) rule. Furthermore, when the ELF threshold value is 0.58, the bond angle distribution analysis of Ge atoms shows that the local structure is a configuration that is mainly defectively octahedral (3-fold Ge) and distorted tetrahedral (4-fold Ge), but it remains unchanged when the threshold value increases to 0.63. It further demonstrates that all the removed chemical bonds are weaker ones as the ELF threshold increases. This approach is useful to improve the accuracy of amorphous structure analysis by obtaining the more reasonable inter-atomic bonding information. And it should be applied to the structural analyses of other systems generally.
-
Keywords:
- cutoff distance /
- electron localization function /
- coordinate number /
- bond angle distribution
[1] Zallen R 1983 The Physics of Amorphous Solids (New York: Wiley) pp10-16
[2] Ziman J M 1979 Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge: Cambridge University Press) pp51-56
[3] Yonezawa F, Ninomiya T 1983 Topological Disorder in Condensed Matter (Berlin: Springer) pp30-39
[4] McGreevy R L, Pusztai L 1988 Mol. Simul. 1 359
[5] Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182
[6] Akola J, Jones R O 2007 Phys. Rev. B 76 235201
[7] Xu M, Cheng Y Q, Wang L, Sheng H W, Meng Y, Yang W G, Han X D, Ma E 2012 Proc. Natl. Acad. Sci. U. S. A. 109 E1055
[8] Xu M, Cheng Y Q, Sheng H W, Ma E 2009 Phys. Rev. Lett. 103 195502
[9] Hughbanks T, Hoffmann R 1983 J. Am. Chem. Soc. 105 3528
[10] Silvi B, Savin A 1994 Nature 371 683
[11] Ovshinsky S R 1968 Phys. Rev. Lett. 21 1450
[12] Yoon S M, Choi K J, Lee N Y, Jung S W, Lee S Y, Park Y S, Yu B G, Lee S J, Yoon S G 2008 J. Electrochem. Soc. 155 H421
[13] Wang K, Steitner C, Warnwangi D, Ziegler S, Wuttig M, Tomforde J, Bensch W 2007 Microsyst. Technol. 13 203
[14] Welnic W, Wuttig M 2008 Mater. Today 11 20
[15] Wuttig M, Yamada N 2007 Nat. Mater. 6 824
[16] Kolobov A V, Fons P, Frenkel A I, Ankudinov A L, Tominaga J, Uruga T 2004 Nat. Mater. 3 703
[17] Caravati S, Bernasconi M, Khne T D, Krack M, Parrinello M 2007 Appl. Phys. Lett. 91 171906
[18] Lee T H, Elliott S R 2011 Phys. Rev. Lett. 107 145702
[19] Zhang W, Ronneberger I, Li Y, Mazzarello R 2013 Monatsh. Chem. 145 97
[20] Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15
[21] Rao X, Wang R Z, Cao J X, Yan H 2015 Acta Phys. Sin. 64 107303 (in Chinese) [饶雪, 王如志, 曹觉先, 严辉 2015 64 107303]
[22] Ernzerhof M, Scuseria G E 1999 J. Chem. Phys. 110 5029
[23] Tuckerman M, Berne B J, Martyna G J 1992 J. Chem. Phys. 97 1990
[24] Nonaka T, Ohbayashi G, Toriumi Y, Mori Y, Hashimoto H 2000 Thin Solid Films 370 258
[25] Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M 2008 Nat. Mater. 7 972
[26] Welnic W, Botti S, Reining L, Wuttig M 2007 Phys. Rev. Lett. 98 4
-
[1] Zallen R 1983 The Physics of Amorphous Solids (New York: Wiley) pp10-16
[2] Ziman J M 1979 Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge: Cambridge University Press) pp51-56
[3] Yonezawa F, Ninomiya T 1983 Topological Disorder in Condensed Matter (Berlin: Springer) pp30-39
[4] McGreevy R L, Pusztai L 1988 Mol. Simul. 1 359
[5] Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182
[6] Akola J, Jones R O 2007 Phys. Rev. B 76 235201
[7] Xu M, Cheng Y Q, Wang L, Sheng H W, Meng Y, Yang W G, Han X D, Ma E 2012 Proc. Natl. Acad. Sci. U. S. A. 109 E1055
[8] Xu M, Cheng Y Q, Sheng H W, Ma E 2009 Phys. Rev. Lett. 103 195502
[9] Hughbanks T, Hoffmann R 1983 J. Am. Chem. Soc. 105 3528
[10] Silvi B, Savin A 1994 Nature 371 683
[11] Ovshinsky S R 1968 Phys. Rev. Lett. 21 1450
[12] Yoon S M, Choi K J, Lee N Y, Jung S W, Lee S Y, Park Y S, Yu B G, Lee S J, Yoon S G 2008 J. Electrochem. Soc. 155 H421
[13] Wang K, Steitner C, Warnwangi D, Ziegler S, Wuttig M, Tomforde J, Bensch W 2007 Microsyst. Technol. 13 203
[14] Welnic W, Wuttig M 2008 Mater. Today 11 20
[15] Wuttig M, Yamada N 2007 Nat. Mater. 6 824
[16] Kolobov A V, Fons P, Frenkel A I, Ankudinov A L, Tominaga J, Uruga T 2004 Nat. Mater. 3 703
[17] Caravati S, Bernasconi M, Khne T D, Krack M, Parrinello M 2007 Appl. Phys. Lett. 91 171906
[18] Lee T H, Elliott S R 2011 Phys. Rev. Lett. 107 145702
[19] Zhang W, Ronneberger I, Li Y, Mazzarello R 2013 Monatsh. Chem. 145 97
[20] Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15
[21] Rao X, Wang R Z, Cao J X, Yan H 2015 Acta Phys. Sin. 64 107303 (in Chinese) [饶雪, 王如志, 曹觉先, 严辉 2015 64 107303]
[22] Ernzerhof M, Scuseria G E 1999 J. Chem. Phys. 110 5029
[23] Tuckerman M, Berne B J, Martyna G J 1992 J. Chem. Phys. 97 1990
[24] Nonaka T, Ohbayashi G, Toriumi Y, Mori Y, Hashimoto H 2000 Thin Solid Films 370 258
[25] Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M 2008 Nat. Mater. 7 972
[26] Welnic W, Botti S, Reining L, Wuttig M 2007 Phys. Rev. Lett. 98 4
计量
- 文章访问数: 6464
- PDF下载量: 393
- 被引次数: 0