搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

物理截断与电子局域函数结合法研究非晶态结构中的原子成键

王鑫洋 陈念科 王雪鹏 张斌 陈志红 李贤斌 刘显强

引用本文:
Citation:

物理截断与电子局域函数结合法研究非晶态结构中的原子成键

王鑫洋, 陈念科, 王雪鹏, 张斌, 陈志红, 李贤斌, 刘显强

Bonding nature of the amorphous structure studied by a combination of cutoff and electronic localization function

Wang Xin-Yang, Chen Nian-Ke, Wang Xue-Peng, Zhang Bin, Chen Zhi-Hong, Li Xian-Bin, Liu Xian-Qiang
PDF
导出引用
  • 本文将常用的键长物理截断方法与电子局域函数方法相结合,运用于分析共价系统的非晶态结构,得到了更合理的原子成键信息,提高了非晶态结构模型分析的可靠性. 本工作以相变存储材料GeTe合金为例,通过采用上述方法详细研究了GeTe合金非晶态中原子间成键及结构信息,确定了其合理的成键物理截断长度为3.05 ,电子局域函数阈值为0.63. 研究结果显示,当电子局域函数的数值由0.58逐渐增大至0.63时,结构中所截断的化学键大部分是强度较弱的非同质键(即Ge-Te键),而强度较强的Ge-Ge键的数量几乎不变. 对Ge原子配位数和其键角分布等结构信息的分析表明,Ge原子以3配位和4配位为主,其中3配位的Ge原子主要是以缺陷八面体形式存在,而4配位的Ge原子则主要以四面体的形式存在. 此外,在本研究工作中所建立的确定成键物理截断长度及电子局域函数阈值的方法也可以应用于其他具有共价键性质的非晶态材料研究.
    The analysis of the local structure of covalent glass is one of the major challenges for analyzing the amorphous structure. Usually, people use a cutoff distance to determine the coordinated atoms and relevant structural information, such as coordination number and bond angles. Recently, the electron localization function (ELF) has been used to analyze the local structure of amorphous Ge2Sb2Te5. But how to determine the EFL threshold and cutoff distance has not been reported. Here, according to the ab-initio calculations, we systematically investigate the relationship between the bond number and the ELF threshold, and also the cutoff distance in amorphous GeTe. The reasonable value of the ELF threshold and the cutoff distance are determined according to the inflection point and slope change of the bond number with ELF value respectively. Furthermore, the minimal ELF value distributions of Ge-Ge, Ge-Te and Te-Te bonds are presented. The comparison shows that the majority of removed bonds in structural analysis are weak Ge-Te bonds due to the low localization degree of electron. In contrast, the stronger Ge-Ge bonds are almost unchanged when changing the ELF threshold value from 0.58 to 0.63 because of the high localization degree of electron. The average minimal ELF value of Ge-Te bonds in crystalline GeTe is calculated, and it is close to the ELF threshold that is determined by the inflection point. t is easy to find that the Ge-Te bonds which are removed by increasing the ELF threshold are relatively weak. Therefore, these weaker bonds should be removed in structure analysis, which also means that the ELF threshold determined by the inflection point are reasonable value. Finally, based on the EFL threshold value, the coordination number and bond angle distribution of Ge in amorphous GeTe are obtained. The analysis of the coordination number of the Ge atoms shows that as the ELF threshold increases from 0.58 to 0.63, the 5- fold Ge atoms almost disappear because they are against the (8-N) rule. Furthermore, when the ELF threshold value is 0.58, the bond angle distribution analysis of Ge atoms shows that the local structure is a configuration that is mainly defectively octahedral (3-fold Ge) and distorted tetrahedral (4-fold Ge), but it remains unchanged when the threshold value increases to 0.63. It further demonstrates that all the removed chemical bonds are weaker ones as the ELF threshold increases. This approach is useful to improve the accuracy of amorphous structure analysis by obtaining the more reasonable inter-atomic bonding information. And it should be applied to the structural analyses of other systems generally.
      通信作者: 刘显强, xqliu@bjut.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号:11204008)资助的课题.
      Corresponding author: Liu Xian-Qiang, xqliu@bjut.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11204008).
    [1]

    Zallen R 1983 The Physics of Amorphous Solids (New York: Wiley) pp10-16

    [2]

    Ziman J M 1979 Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge: Cambridge University Press) pp51-56

    [3]

    Yonezawa F, Ninomiya T 1983 Topological Disorder in Condensed Matter (Berlin: Springer) pp30-39

    [4]

    McGreevy R L, Pusztai L 1988 Mol. Simul. 1 359

    [5]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [6]

    Akola J, Jones R O 2007 Phys. Rev. B 76 235201

    [7]

    Xu M, Cheng Y Q, Wang L, Sheng H W, Meng Y, Yang W G, Han X D, Ma E 2012 Proc. Natl. Acad. Sci. U. S. A. 109 E1055

    [8]

    Xu M, Cheng Y Q, Sheng H W, Ma E 2009 Phys. Rev. Lett. 103 195502

    [9]

    Hughbanks T, Hoffmann R 1983 J. Am. Chem. Soc. 105 3528

    [10]

    Silvi B, Savin A 1994 Nature 371 683

    [11]

    Ovshinsky S R 1968 Phys. Rev. Lett. 21 1450

    [12]

    Yoon S M, Choi K J, Lee N Y, Jung S W, Lee S Y, Park Y S, Yu B G, Lee S J, Yoon S G 2008 J. Electrochem. Soc. 155 H421

    [13]

    Wang K, Steitner C, Warnwangi D, Ziegler S, Wuttig M, Tomforde J, Bensch W 2007 Microsyst. Technol. 13 203

    [14]

    Welnic W, Wuttig M 2008 Mater. Today 11 20

    [15]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [16]

    Kolobov A V, Fons P, Frenkel A I, Ankudinov A L, Tominaga J, Uruga T 2004 Nat. Mater. 3 703

    [17]

    Caravati S, Bernasconi M, Khne T D, Krack M, Parrinello M 2007 Appl. Phys. Lett. 91 171906

    [18]

    Lee T H, Elliott S R 2011 Phys. Rev. Lett. 107 145702

    [19]

    Zhang W, Ronneberger I, Li Y, Mazzarello R 2013 Monatsh. Chem. 145 97

    [20]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [21]

    Rao X, Wang R Z, Cao J X, Yan H 2015 Acta Phys. Sin. 64 107303 (in Chinese) [饶雪, 王如志, 曹觉先, 严辉 2015 64 107303]

    [22]

    Ernzerhof M, Scuseria G E 1999 J. Chem. Phys. 110 5029

    [23]

    Tuckerman M, Berne B J, Martyna G J 1992 J. Chem. Phys. 97 1990

    [24]

    Nonaka T, Ohbayashi G, Toriumi Y, Mori Y, Hashimoto H 2000 Thin Solid Films 370 258

    [25]

    Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M 2008 Nat. Mater. 7 972

    [26]

    Welnic W, Botti S, Reining L, Wuttig M 2007 Phys. Rev. Lett. 98 4

  • [1]

    Zallen R 1983 The Physics of Amorphous Solids (New York: Wiley) pp10-16

    [2]

    Ziman J M 1979 Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge: Cambridge University Press) pp51-56

    [3]

    Yonezawa F, Ninomiya T 1983 Topological Disorder in Condensed Matter (Berlin: Springer) pp30-39

    [4]

    McGreevy R L, Pusztai L 1988 Mol. Simul. 1 359

    [5]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [6]

    Akola J, Jones R O 2007 Phys. Rev. B 76 235201

    [7]

    Xu M, Cheng Y Q, Wang L, Sheng H W, Meng Y, Yang W G, Han X D, Ma E 2012 Proc. Natl. Acad. Sci. U. S. A. 109 E1055

    [8]

    Xu M, Cheng Y Q, Sheng H W, Ma E 2009 Phys. Rev. Lett. 103 195502

    [9]

    Hughbanks T, Hoffmann R 1983 J. Am. Chem. Soc. 105 3528

    [10]

    Silvi B, Savin A 1994 Nature 371 683

    [11]

    Ovshinsky S R 1968 Phys. Rev. Lett. 21 1450

    [12]

    Yoon S M, Choi K J, Lee N Y, Jung S W, Lee S Y, Park Y S, Yu B G, Lee S J, Yoon S G 2008 J. Electrochem. Soc. 155 H421

    [13]

    Wang K, Steitner C, Warnwangi D, Ziegler S, Wuttig M, Tomforde J, Bensch W 2007 Microsyst. Technol. 13 203

    [14]

    Welnic W, Wuttig M 2008 Mater. Today 11 20

    [15]

    Wuttig M, Yamada N 2007 Nat. Mater. 6 824

    [16]

    Kolobov A V, Fons P, Frenkel A I, Ankudinov A L, Tominaga J, Uruga T 2004 Nat. Mater. 3 703

    [17]

    Caravati S, Bernasconi M, Khne T D, Krack M, Parrinello M 2007 Appl. Phys. Lett. 91 171906

    [18]

    Lee T H, Elliott S R 2011 Phys. Rev. Lett. 107 145702

    [19]

    Zhang W, Ronneberger I, Li Y, Mazzarello R 2013 Monatsh. Chem. 145 97

    [20]

    Kresse G, Furthmuller J 1996 Comput. Mater. Sci. 6 15

    [21]

    Rao X, Wang R Z, Cao J X, Yan H 2015 Acta Phys. Sin. 64 107303 (in Chinese) [饶雪, 王如志, 曹觉先, 严辉 2015 64 107303]

    [22]

    Ernzerhof M, Scuseria G E 1999 J. Chem. Phys. 110 5029

    [23]

    Tuckerman M, Berne B J, Martyna G J 1992 J. Chem. Phys. 97 1990

    [24]

    Nonaka T, Ohbayashi G, Toriumi Y, Mori Y, Hashimoto H 2000 Thin Solid Films 370 258

    [25]

    Lencer D, Salinga M, Grabowski B, Hickel T, Neugebauer J, Wuttig M 2008 Nat. Mater. 7 972

    [26]

    Welnic W, Botti S, Reining L, Wuttig M 2007 Phys. Rev. Lett. 98 4

  • [1] 马堃, 朱林繁, 颉录有. Ar原子和K+离子序列双光双电离光电子角分布的非偶极效应.  , 2022, 71(6): 063201. doi: 10.7498/aps.71.20211905
    [2] 马堃, 颉录有, 董晨钟. Ar原子序列双光双电离产生光电子角分布的理论计算.  , 2020, 69(5): 053201. doi: 10.7498/aps.69.20191814
    [3] 马堃, 颉录有, 张登红, 蒋军, 董晨钟. 类钠离子光电子角分布的非偶极效应.  , 2017, 66(4): 043201. doi: 10.7498/aps.66.043201
    [4] 马堃, 颉录有, 张登红, 董晨钟, 屈一至. 氖原子光电子角分布的理论计算.  , 2016, 65(8): 083201. doi: 10.7498/aps.65.083201
    [5] 王金霞, 师应龙, 张登红, 颉录有, 董晨钟. 类锂离子双电子复合过程中辐射光子角分布和极化特性的理论研究.  , 2013, 62(23): 233401. doi: 10.7498/aps.62.233401
    [6] 曹万强, 舒明飞. 弛豫铁电体的键能与配位数模型.  , 2013, 62(1): 017701. doi: 10.7498/aps.62.017701
    [7] 鞠志萍, 曹午飞, 刘小伟. 质子散射角分布的蒙特卡罗模拟.  , 2009, 58(1): 174-177. doi: 10.7498/aps.58.174
    [8] 郑志远, 李玉同, 远晓辉, 徐妙华, 梁文锡, 于全芝, 张 翼, 王兆华, 魏志义, 张 杰. 超热电子角分布和能谱的实验研究.  , 2006, 55(10): 5349-5353. doi: 10.7498/aps.55.5349
    [9] 彭晓昱, 张 杰, 金 展, 梁天骄, 仲佳勇, 武慧春, 刘运全, 王兆华, 陈正林, 盛政明, 李玉同, 魏志义. 超短脉冲激光与乙醇微滴相互作用中超热电子的双叶状角分布.  , 2004, 53(8): 2625-2632. doi: 10.7498/aps.53.2625
    [10] 刘红侠, 郝 跃, 张 涛, 郑雪峰, 马晓华. AlGaAs/InGaAs/GaAs赝配高电子迁移晶体管的kink效应研究.  , 2003, 52(4): 984-988. doi: 10.7498/aps.52.984
    [11] 张穗萌, 吴兴举. H原子(e,2e)反应中电子角分布的理论研究.  , 2001, 50(11): 2137-2143. doi: 10.7498/aps.50.2137
    [12] 戚泽明, 施朝淑, 王正, 魏亚光, 谢亚宁, 胡天斗, 李福利. 非晶和纳米ZrO2·Y2O3(15%)的X射线衍射与扩展X射线吸收精细结构研究.  , 2001, 50(7): 1318-1323. doi: 10.7498/aps.50.1318
    [13] 李少甫, 刘强, 徐向东, 钱青, 陈学俊. 多重散射展开方法应用于正电子-氢原子的弹性散射角分布的计算.  , 1993, 42(6): 911-917. doi: 10.7498/aps.42.911
    [14] 李彤, 徐向东, 刘强, 钱青, 陈学俊. 多重散射展开方法应用于电子-氢原子弹性散射角分布的计算.  , 1993, 42(6): 905-910. doi: 10.7498/aps.42.905
    [15] 徐慧, 曾红涛. 无序系统中电子局域态分布.  , 1992, 41(10): 1666-1671. doi: 10.7498/aps.41.1666
    [16] 陈宝振. 氢原子阈上电离角分布.  , 1990, 39(1): 40-45. doi: 10.7498/aps.39.40
    [17] 汪泓, 刘燕, 周亚栋, 陈纲, 胡伯清, 顾本源. ZnWO4晶体中W原子的配位数.  , 1988, 37(1): 43-48. doi: 10.7498/aps.37.43
    [18] 杜有明, 梁家昌. 铜(Ⅱ)四配位卤素络离子的电子结构与吸收光谱.  , 1974, 23(3): 42-51. doi: 10.7498/aps.23.42
    [19] 周生墨, 程玉麟, 朱德彰. 13.4兆电子伏的氘束所致U238,Th232裂变块的角分布.  , 1966, 22(3): 374-376. doi: 10.7498/aps.22.374
    [20] 卓益忠, 李泽清. 裂变碎块角分布与鞍点结构.  , 1964, 20(10): 1003-1018. doi: 10.7498/aps.20.1003
计量
  • 文章访问数:  6464
  • PDF下载量:  393
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-09
  • 修回日期:  2016-06-24
  • 刊出日期:  2016-09-05

/

返回文章
返回
Baidu
map