-
研究了存在内禀退相干时,对于不同的系统初态,具有DM相互作用和各向异性的三粒子XXZ海森伯模型的对纠缠动力学特性,得出了一些结论:系统的对纠缠度与各向异性参数 无关,但内禀退相干对系统的纠缠有明显的抑制作用. 在内禀退相干存在时,若系统初态为纠缠态,选择合适的DM相互作用的参数,系统的对纠缠有一个非零的稳定值;系统初态为分离态时,系统的对纠缠会随时间震荡衰减,并且每次震荡会出现纠缠突然死亡现象,系统的对纠缠最终达到解纠缠状态. 因此,选择合适的系统初态和DM相互作用参数可以有效的控制系统地对纠缠.
-
关键词:
- 量子纠缠 /
- 内禀退相干 /
- 初态 /
- Dzyaloshinskii-Moriya相互作用
With considering the intrinsic decoherence, the dynamic behaviors of quantum entanglement in a three-qubit XXZ Heisenberg system with Dzyaloshinskii-Moriya (DM) interaction and anisotropy for different initial states are investigated. The research result shows that the anisotropy parameter does not affect the system entanglement, however, the intrinsic decoherence has obvious inhibitory effect on entanglement. When the initial state of system is an entangled state, we can obtain the stable value of entanglement by adjusting DM interaction parameters appropriately. As the system initial state is a separation state, entanglement oscillates, and the amplitude of oscillation decays with time periodically, and there will appear the death phenomenon after each oscillation, and with time going on, its concurrence will be zero. When the initial state is entangled, by choosing the proper DM parameter, the three pairs of entanglements oscillate with time and eventually approach to a steady value. The increase of accelerates the decay of concurrence. When the initial state is separated, entanglement oscillates, and the amplitude of oscillation decays with time periodically, and there will appear the death phenomenon after each oscillation, with time going on, its concurrence will be zero. Therefore, the proper initial state and DM interaction parameters can control the concurrence effectively under the intrinsic decoherence, thereby obtaining the preferable entanglement resource.-
Keywords:
- quantum entanglement /
- intrinsic decoherence /
- initial state /
- Dzyaloshinskii-Moriya interaction
[1] Bennett C H, Brassard G, Crepeau C, et al. 1993 Phys. Rev. Lett. 70 1895
[2] Liao J Q, Kuang L M 2006 Chin. Phys. 15 2246
[3] Divincenzo D P, Bacon D, Kempe J K, et al. 2000 Nature 408 339
[4] Shan C J, Xia Y J 2006 Acta Phys. Sin. 55 1585 (in Chinese) [单传家, 夏云杰 2006 55 1585]
[5] Hutton A, Andose S 2004 Phys. Rev. A 69 04231
[6] Lee C F, Johnson N F 2004 Phys. Rev. A 70 052322
[7] Peng X, Du J, Suter D 2005 Phys. Rev. A 71 012307
[8] Bortz M, Karbach M, Schneider I 2009 Phys. Rev. B 79 245414
[9] Pratt F L, Blundell S J, Lancaster T, et al. 2006 Phys. Rev. Lett. 96 247203
[10] Pereira R G, Sirker J, Caux. J S, et al. 2006 Phys. Rev. Lett. 96 257202
[11] Kohno M 2009 Phys. Rev. Lett. 102 037203
[12] Gong S S, Su G 2009 Phys. Rev. A 80 012323
[13] Chen Z X, Zhou Z W, Zhou X, et al. 2010 Phys. Rev. A 81 022303
[14] Shan C J, Chen W W, Liu T K, Huang Y X, Li H 2008 Acta Phys. Sin. 57 2687 (in Chinese) [单传家, 程维文, 刘堂昆, 黄燕霞, 李宏 2008 57 2687]
[15] Xi Y X, Shan C J, Huang Y X 2014 Journal of Atomic and Molecular Physics 31 769 (in Chinese) [郗玉兴, 单传家, 黄燕霞 2014 原子与分子 31 769]
[16] Xi Y X, Chen W W, Huang Y X 2015 Quantum Inf. Process. 015 0998
[17] Xi Y X, Huang Y X 2015 Mod. Phys. Lett. B 29 1550107
[18] Zanardi P, Rasetti I 1997 Phys. Rev. Lett. 79 3306
[19] Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594
[20] Zou Q, Hu X M, Liu J M 2015 Acta Phys. Sin. 64 080302 (in Chinese) [邹琴, 胡小勉, 刘金明 2015 64 080302]
[21] Hamieh S D and Katsnelson M I 2000 Phys. Rev. A 72 032316
[22] Xu X B, Liu J M, Yu P F 2008 Chin. Phys. B 17 456
[23] Guo Z Y, Zhang X H, Xiao R H, et al. 2014 Acta Optica Sin. 34 0727001 (in Chinese) [郭战营, 张新海, 肖瑞华 等 2014 光学学报 34 0727001]
[24] Milburn G J 1991 Phys. Rev. A 44 5401
[25] Moya-Cessa H, Buzck V, Kim M S 1993 Phys. Rev. A 48 3900
[26] Jing B X, Xu B Z 1999 Phys. Rev. A 60 4743
[27] Wootters W K 1998 Phys. Rev. Lett. 80 2245
-
[1] Bennett C H, Brassard G, Crepeau C, et al. 1993 Phys. Rev. Lett. 70 1895
[2] Liao J Q, Kuang L M 2006 Chin. Phys. 15 2246
[3] Divincenzo D P, Bacon D, Kempe J K, et al. 2000 Nature 408 339
[4] Shan C J, Xia Y J 2006 Acta Phys. Sin. 55 1585 (in Chinese) [单传家, 夏云杰 2006 55 1585]
[5] Hutton A, Andose S 2004 Phys. Rev. A 69 04231
[6] Lee C F, Johnson N F 2004 Phys. Rev. A 70 052322
[7] Peng X, Du J, Suter D 2005 Phys. Rev. A 71 012307
[8] Bortz M, Karbach M, Schneider I 2009 Phys. Rev. B 79 245414
[9] Pratt F L, Blundell S J, Lancaster T, et al. 2006 Phys. Rev. Lett. 96 247203
[10] Pereira R G, Sirker J, Caux. J S, et al. 2006 Phys. Rev. Lett. 96 257202
[11] Kohno M 2009 Phys. Rev. Lett. 102 037203
[12] Gong S S, Su G 2009 Phys. Rev. A 80 012323
[13] Chen Z X, Zhou Z W, Zhou X, et al. 2010 Phys. Rev. A 81 022303
[14] Shan C J, Chen W W, Liu T K, Huang Y X, Li H 2008 Acta Phys. Sin. 57 2687 (in Chinese) [单传家, 程维文, 刘堂昆, 黄燕霞, 李宏 2008 57 2687]
[15] Xi Y X, Shan C J, Huang Y X 2014 Journal of Atomic and Molecular Physics 31 769 (in Chinese) [郗玉兴, 单传家, 黄燕霞 2014 原子与分子 31 769]
[16] Xi Y X, Chen W W, Huang Y X 2015 Quantum Inf. Process. 015 0998
[17] Xi Y X, Huang Y X 2015 Mod. Phys. Lett. B 29 1550107
[18] Zanardi P, Rasetti I 1997 Phys. Rev. Lett. 79 3306
[19] Lidar D A, Chuang I L, Whaley K B 1998 Phys. Rev. Lett. 81 2594
[20] Zou Q, Hu X M, Liu J M 2015 Acta Phys. Sin. 64 080302 (in Chinese) [邹琴, 胡小勉, 刘金明 2015 64 080302]
[21] Hamieh S D and Katsnelson M I 2000 Phys. Rev. A 72 032316
[22] Xu X B, Liu J M, Yu P F 2008 Chin. Phys. B 17 456
[23] Guo Z Y, Zhang X H, Xiao R H, et al. 2014 Acta Optica Sin. 34 0727001 (in Chinese) [郭战营, 张新海, 肖瑞华 等 2014 光学学报 34 0727001]
[24] Milburn G J 1991 Phys. Rev. A 44 5401
[25] Moya-Cessa H, Buzck V, Kim M S 1993 Phys. Rev. A 48 3900
[26] Jing B X, Xu B Z 1999 Phys. Rev. A 60 4743
[27] Wootters W K 1998 Phys. Rev. Lett. 80 2245
计量
- 文章访问数: 6445
- PDF下载量: 182
- 被引次数: 0