搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SO分子最低两个电子态振-转谱的显关联多参考组态相互作用计算

魏长立 梁桂颖 刘晓婷 颜培源 闫冰

引用本文:
Citation:

SO分子最低两个电子态振-转谱的显关联多参考组态相互作用计算

魏长立, 梁桂颖, 刘晓婷, 颜培源, 闫冰

Calculations on rovibrational spectra of two lowest electronic states in sulfur monoxide molecule by explicitly correlated approach

Wei Chang-Li, Liang Gui-Ying, Liu Xiao-Ting, Yan Pei-Yuan, Yan Bing
PDF
导出引用
  • 采用显关联多参考组态相互作用(explicitly correlated multi-reference configuration interaction method,MRCI-F12)方法和相关一致基组cc-pCVQZ-F12计算了双原子分子SO的基态X3Σ-和第一激发态a1Δ的势能曲线,研究中考虑了Davidson 修正,芯-价电子关联 修正和标量相对论效应. 通过对这两个束缚电子态势能曲线的拟合,给出了光谱常数并与其他理论和实验结果做了比较. 进一步地,获得了这两个态的振- 转能级信息. 本文计算结果与实验的相对误差仅在千分之一量级,对将来的实验有重要的参考价值;同时也表明MRCI-F12方法可推广到小分子体系势能面的高效、精确计算研究中.
    Accurate spectroscopic constants and rovibrational level information are of great importance in molecular physics and astrophysical field. In this work, a new computational scheme is presented to further improve the accuracy of spectroscopic constants, and the two lowest electronic states of sulfur monoxide molecule are investigated as a typical case study. High-level ab initio calculations are carried out to compute the potential energy curves (PECs) of the lowest bound states, the ground triplet states X3Σg-, and the first excited singlet states a1Δg of SO molecule. The explicitly correlated multi-reference configuration interaction method (MRCI-F12) and cc-pCVQZ-F12 basis set are adopted in the electronic structure computations. The Davidson correction is taken into account to eliminate the size-consistency error. The core-valence (CV) electron correlations of the n=2 shell of S atom and n=1 shell of O atom are estimated by the MRCI-F12 method, whereas only the 1 s orbital of S atom is excluded in the CV calculations. Moreover, we introduce the scalar relativistic effect into our study by utilizing the second-order Douglas-Kroll and Hess (DKH) one-electron integrals by the MRCI method through combining with the uncontracted cc-pCVQZ-F12 basis set. On the basis of the PECs of the SO dimer, the spectroscopic constants (Te, Re, ωe, ωeχe, Be, αe and De) of the two electronic states are determined by solving the one-dimensional nuclear rovibrational Schrödinger equations. Our spectroscopic constants are found to be in excellent agreement with previous experimental and theoretical values. Furthermore, the detailed information about the vibrational energy levels and rotation spectroscopic constants (Bν, Dν) of the two states is also presented with a deviation of 0.1% order of magnitude from the available experimental results. Our present computational work is valuable for future experimental studies on the rovibrational energy levels for the SO molecule and also indicates that the MRCI-F12 approach is cheap and accurate and expected to have wide applications in the PECs of other small molecular systems.
      通信作者: 闫冰, yanbing@jlu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11574114)和吉林省自然科学基金(批准号:20150101003JC)资助的课题.
      Corresponding author: Yan Bing, yanbing@jlu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grand No. 11574114) and the Natural Science Foundation of Jilin Province, China(Grand No. 20150101003JC).
    [1]

    Wayne R P 2000 Chemistry of the Atmospheres (3rd Ed.) (Oxford: Oxford Science) p99

    [2]

    Moses J I, Alen M, Gladstone G R 1995 Geophys. Res. Lett. 22 1597

    [3]

    Clyne M A A, Tennyson P H 1986 J. Chem. Soc. 82 1315

    [4]

    Cao D Z, Setser D W 1988 J. Phys. Chem. 92 1169

    [5]

    Clyne M A A, Liddy J P 1982 J. Chem. Soc., Faraday Trans. II 78 1127

    [6]

    Miller H C, Yamasaki K, Smedley J E, Leone S R 1991 Chem. Phys. Lett. 181 250

    [7]

    Carrington B A, Levy D H, Miller T A 1966 Proc. R. Soc. London Ser. A 293 108

    [8]

    Saito S 1970 J. Chem. Phys. 53 2544

    [9]

    Barnes I, Becker K H, Fink E H 1979 Chem. Phys. Lett. 67 310

    [10]

    Bielefeld M, Elfers G, Fink E H, Kruse H, Wildt J, Winter R, Zabel F 1984 J. Photochem. 25 419

    [11]

    Burkholder J B, Lovejoy E R, Hammer P D, Howard C J 1987 J. Mol. Spectrosc. 124 379

    [12]

    Bogey M, Civiš S, Delcroix B, Demuynck C, Krupnov A F, Quiguer J, Tretyakov M Y, Walters A 1997 J. Mol. Spectrosc. 182 85

    [13]

    Speth R S, Braatz C, Tiemann E 1998 J. Mol. Spectrosc. 192 69

    [14]

    Setzer K D, Fink E H, Ramsay D A 1999 J. Mol. Spectrosc. 198 163

    [15]

    Dixon R N, Tasker P W, Balint-Kurti G G 1977 Mol. Phys. 34 1455

    [16]

    Swope W C, Lee Y P, Schaefer H F 1979 J. Chem. Phys. 71 3761

    [17]

    Theodorakopoulos G, Peyerimhoff S D, Buenker R J 1981 Chem. Phys. Lett. 81 413

    [18]

    Klotz R, Marian C M, Reyerimhoff S D 1984 Chem. Phys. 89 223

    [19]

    Peterson K A, Woods R C 1990 J. Chem. Phys. 93 1876

    [20]

    Borin A C, Ornellas F R 1999 Chem. Phys. 247 351

    [21]

    Borin A C, Ornellas F R 2000 Chem. Phys. Lett. 322 149

    [22]

    Yu L, Bian W S 2011 J. Comput. Chem. 32 1577

    [23]

    Wei C L, Zhang X M, Ding D J, Yan B 2016 Chin. Phys. B 25 013102

    [24]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [25]

    Werner H J, Knowles P J 1985 Chem. Phys. Lett. 82 5053

    [26]

    Shiozaki T, Knizia G, Werner H J 2011 J. Chem. Phys. 134 034113

    [27]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [28]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [29]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [30]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007

    [31]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358

    [32]

    Douglas M, Kroll N M 1974 Ann. Phys. 82 89

    [33]

    Hess B A 1986 Phys. Rev. A 33 3742

    [34]

    Le Roy R J 2002 LEVEL7.5: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-665

    [35]

    Woon D E, Dunning Jr T H 1994 J. Chem. Phys. 101 8877

    [36]

    Swope W C, Lee Y P, Schaefer H F 1979 J. Chem. Phys. 71 3761

    [37]

    Flscher M P, Jaszunski M, Roos B O, Kraemer W P 1992 J. Chem. Phys. 96 504

    [38]

    Oyedepo G A, Wilson A K 2010 J. Phys. Chem A 114 8806

    [39]

    Huber K P, Herzberg G 1979 Constants of Diatomic Molecules, Molecular Spectra and Molecular Structure (Vol. IV) (New York: Van Nostrand Reinhold) pp622-623

    [40]

    Clyne M A A, McDermid I S 1979 J. Chem. Soc. Faraday Trans. 75 905

    [41]

    Rosen B 1970 International Tables of Selected Constants (Oxford: Pergamon Press) p432

    [42]

    Ten-no S 2004 Chem. Phys. Lett. 398 56

  • [1]

    Wayne R P 2000 Chemistry of the Atmospheres (3rd Ed.) (Oxford: Oxford Science) p99

    [2]

    Moses J I, Alen M, Gladstone G R 1995 Geophys. Res. Lett. 22 1597

    [3]

    Clyne M A A, Tennyson P H 1986 J. Chem. Soc. 82 1315

    [4]

    Cao D Z, Setser D W 1988 J. Phys. Chem. 92 1169

    [5]

    Clyne M A A, Liddy J P 1982 J. Chem. Soc., Faraday Trans. II 78 1127

    [6]

    Miller H C, Yamasaki K, Smedley J E, Leone S R 1991 Chem. Phys. Lett. 181 250

    [7]

    Carrington B A, Levy D H, Miller T A 1966 Proc. R. Soc. London Ser. A 293 108

    [8]

    Saito S 1970 J. Chem. Phys. 53 2544

    [9]

    Barnes I, Becker K H, Fink E H 1979 Chem. Phys. Lett. 67 310

    [10]

    Bielefeld M, Elfers G, Fink E H, Kruse H, Wildt J, Winter R, Zabel F 1984 J. Photochem. 25 419

    [11]

    Burkholder J B, Lovejoy E R, Hammer P D, Howard C J 1987 J. Mol. Spectrosc. 124 379

    [12]

    Bogey M, Civiš S, Delcroix B, Demuynck C, Krupnov A F, Quiguer J, Tretyakov M Y, Walters A 1997 J. Mol. Spectrosc. 182 85

    [13]

    Speth R S, Braatz C, Tiemann E 1998 J. Mol. Spectrosc. 192 69

    [14]

    Setzer K D, Fink E H, Ramsay D A 1999 J. Mol. Spectrosc. 198 163

    [15]

    Dixon R N, Tasker P W, Balint-Kurti G G 1977 Mol. Phys. 34 1455

    [16]

    Swope W C, Lee Y P, Schaefer H F 1979 J. Chem. Phys. 71 3761

    [17]

    Theodorakopoulos G, Peyerimhoff S D, Buenker R J 1981 Chem. Phys. Lett. 81 413

    [18]

    Klotz R, Marian C M, Reyerimhoff S D 1984 Chem. Phys. 89 223

    [19]

    Peterson K A, Woods R C 1990 J. Chem. Phys. 93 1876

    [20]

    Borin A C, Ornellas F R 1999 Chem. Phys. 247 351

    [21]

    Borin A C, Ornellas F R 2000 Chem. Phys. Lett. 322 149

    [22]

    Yu L, Bian W S 2011 J. Comput. Chem. 32 1577

    [23]

    Wei C L, Zhang X M, Ding D J, Yan B 2016 Chin. Phys. B 25 013102

    [24]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259

    [25]

    Werner H J, Knowles P J 1985 Chem. Phys. Lett. 82 5053

    [26]

    Shiozaki T, Knizia G, Werner H J 2011 J. Chem. Phys. 134 034113

    [27]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61

    [28]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514

    [29]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803

    [30]

    Dunning Jr T H 1989 J. Chem. Phys. 90 1007

    [31]

    Woon D E, Dunning Jr T H 1993 J. Chem. Phys. 98 1358

    [32]

    Douglas M, Kroll N M 1974 Ann. Phys. 82 89

    [33]

    Hess B A 1986 Phys. Rev. A 33 3742

    [34]

    Le Roy R J 2002 LEVEL7.5: A Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) Chemical Physics Research Report CP-665

    [35]

    Woon D E, Dunning Jr T H 1994 J. Chem. Phys. 101 8877

    [36]

    Swope W C, Lee Y P, Schaefer H F 1979 J. Chem. Phys. 71 3761

    [37]

    Flscher M P, Jaszunski M, Roos B O, Kraemer W P 1992 J. Chem. Phys. 96 504

    [38]

    Oyedepo G A, Wilson A K 2010 J. Phys. Chem A 114 8806

    [39]

    Huber K P, Herzberg G 1979 Constants of Diatomic Molecules, Molecular Spectra and Molecular Structure (Vol. IV) (New York: Van Nostrand Reinhold) pp622-623

    [40]

    Clyne M A A, McDermid I S 1979 J. Chem. Soc. Faraday Trans. 75 905

    [41]

    Rosen B 1970 International Tables of Selected Constants (Oxford: Pergamon Press) p432

    [42]

    Ten-no S 2004 Chem. Phys. Lett. 398 56

  • [1] 朱宇豪, 李瑞. 基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究.  , 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [2] 文琳, 樊群超, 蹇君, 范志祥, 李会东, 付佳, 马杰, 谢锋. 基于SO分子振转能级计算其宏观气体摩尔热容.  , 2022, 71(17): 175101. doi: 10.7498/aps.71.20212273
    [3] 王杰敏, 王希娟, 陶亚萍. 75As32S+和75As34S+离子的光谱常数与分子常数.  , 2015, 64(24): 243101. doi: 10.7498/aps.64.243101
    [4] 韩亚楠, 蒋刚, 范全平, 高玉峰, 杜际广. 激发态Li原子和基态Ar原子的相互作用势及低能弹性碰撞.  , 2015, 64(4): 043401. doi: 10.7498/aps.64.043401
    [5] 刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰. GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究.  , 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [6] 李桂霞, 姜永超, 凌翠翠, 马红章, 李鹏. HF+离子在旋轨耦合作用下电子态的特性.  , 2014, 63(12): 127102. doi: 10.7498/aps.63.127102
    [7] 李松, 韩立波, 陈善俊, 段传喜. SN-分子离子的势能函数和光谱常数研究.  , 2013, 62(11): 113102. doi: 10.7498/aps.62.113102
    [8] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究.  , 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [9] 王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋. AsO+同位素离子X2+和A2电子态的多参考组态相互作用方法研究.  , 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [10] 刘冬梅, 张树东. BeCl分子电子激发态的多参考组态相互作用计算.  , 2012, 61(3): 033101. doi: 10.7498/aps.61.033101
    [11] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究.  , 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [12] 魏洪源, 熊晓玲, 刘国平, 罗顺忠. TiO基态 (X 3 Δr) 的势能函数与光谱常数.  , 2011, 60(6): 063401. doi: 10.7498/aps.60.063401
    [13] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数.  , 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [14] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数.  , 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [15] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数.  , 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [16] 陈恒杰, 程新路, 唐海燕, 王全武, 苏欣纺. LiC分子基态及其低电子激发态的多参考组态相互作用方法研究.  , 2010, 59(7): 4556-4563. doi: 10.7498/aps.59.4556
    [17] 施德恒, 张金平, 孙金锋, 刘玉芳, 朱遵略. 基态S和D原子的低能弹性碰撞及SD(X2Π)自由基的准确相互作用势与分子常数.  , 2009, 58(11): 7646-7653. doi: 10.7498/aps.58.7646
    [18] 徐国亮, 吕文静, 肖小红, 张现周, 刘玉芳, 朱遵略, 孙金锋. 密度泛函方法对SiO分子基态(X 1Σ+)势能函数的研究.  , 2008, 57(12): 7577-7580. doi: 10.7498/aps.57.7577
    [19] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数.  , 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [20] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数.  , 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
计量
  • 文章访问数:  6158
  • PDF下载量:  247
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-28
  • 修回日期:  2016-06-15
  • 刊出日期:  2016-08-05

/

返回文章
返回
Baidu
map